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Abstract. Recent accounts of actual causation are stated in terms of extended causal models.
These extended causal models contain two elements representing two seemingly distinct modalities.
The first element are structural equations which represent the “(causal) laws” or mechanisms of the
model, just as ordinary causal models do. The second element are ranking functions which represent
normality or typicality. The aim of this paper is to show that these two modalities can be unified. I do
so by formulating two constraints under which extended causal models with their two modalities
can be subsumed under so called “counterfactual models” which contain just one modality. These
two constraints will be formally precise versions of Lewis’ (1979) familiar “system of weights or
priorities” governing overall similarity between possible worlds.

§1. Introduction. Recent accounts of actual causation are stated in terms of extended
causal models. These extended causal models contain two elements representing two seem-
ingly distinct modalities. The first element are structural equations which represent the
“(causal) laws” or mechanisms of the model, just as ordinary causal models do. The second
element are ranking functions which represent normality or typicality. The aim of this paper
is to show that these two modalities can be unified. I do so by formulating two constraints
under which extended causal models with their two modalities can be subsumed under
so called “counterfactual models” which contain just one modality. These two constraints
will be formally precise versions of Lewis’ (1979) familiar “system of weights or priori-
ties” governing overall similarity between possible worlds.

Here is my strategy in a bit more detail. Elsewhere I have introduced counterfactual
models which contain one element representing one modality: objective ranking functions
representing counterfactuality. In a first step I will generalize extended causal models by
relaxing certain restrictions. If anything, this makes my task more difficult. In a second step
I interpret the ranking functions in these generalized extended causal models objectively as
in counterfactual models. In a third step I formulate two constraints on these generalized
and objectively interpreted extended causal models. The first constraint relates structural
equations and ranking functions. It is reminiscent of Lewis’ (1979, 472) two conditions
that “[i]t is of the first importance to avoid big, widespread, diverse violations of law” and
that “[i]t is of the third importance to avoid even small, localized, simple violations of
law.” I show that extended causal models satisfying this first constraint can be subsumed
under counterfactual models. The second constraint relates ranking functions and actuality.
It is reminiscent of Lewis’ (1979, 472) condition that “[i]t is of the second importance
to maximize the spatiotemporal region throughout which perfect match of particular fact
prevails.” I show that extended causal models that satisfy this second constraint in addition
to the first constraint can be subsumed under counterfactual models in a conservative
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way. By that I mean that all counterfactual claims as well as all claims about lawhood,
causality, and actuality are conserved. Therefore, given these two constraints, there is
only one modality that is needed to model actual causation and causality in general. That
one modality is counterfactuality, which unifies the two modalities of “(causal) laws”
or mechanisms and of normality or typicality that figure in extended causal models. This
unification is achieved by a formally precise version of Lewis’ (1979, 472) “system of
weights or priorities.”

This result is primarily a result about counterfactuals. However, it may impact the theory
of causality in the following way. On the new picture of extended causal models, actual
causation is the wrong concept to focus on, because it is a hybrid that involves two seem-
ingly distinct modalities. On this view the concept to focus on is the notion of a “(causal)
law” or mechanism as represented by a structural equation. In combination with normality
or typicality, as well as what is actually the case, “(causal) laws” or mechanisms somehow
give rise to actual causation. On a more traditional picture the concept to focus on is that of
actual causation, which is to be analyzed in terms of counterfactuals (Lewis, 1973a, 1986a,
2000). I do not want to take sides on the issue of which causal notion to focus on. The
issue I want to take sides on is how to represent counterfactuals. The traditional picture
has come under attack because it has the wrong theory of counterfactuals (Lewis, 1973b,
1979). The new picture of extended causal models receives incredulous stares because it
has an incomplete theory of counterfactuals. It reaches for a second modality in order to
compensate for this incompleteness. However, in contrast to the first modality of “(causal)
laws” or mechanisms the second modality of normality or typicality seems to be partly
subjective. This flies in the face of the seemingly objective nature of actual causation.
Hence the incredulous stares. The present account corrects the theory of counterfactuals
underlying the traditional picture. It completes the theory of counterfactuals underlying
the new picture by unifying the two modalities of the latter. Therefore, the present account
provides the framework in terms of which a counterfactual theory of causality should be
formulated, if one wants to defend such a theory.1

§2. Structural equations and defaults. The most promising framework for analyzing
causation seems to be the structural equations approach (Spirtes et al., 2000; Pearl, 2009,
chap. 7; see also Halpern & Pearl, 2005a, 2005b; Hitchcock, 2001, 2007). While structural
equations are primarily used for the analysis of causation, they are of independent interest
for studying the logic of counterfactuals (see Briggs, 2012; Halpern, 2013). I will touch
upon some issues in this connection below, but first we have to get started. The following
definition is due to Halpern (2008).
M = (S,F) is a causal model if and only if S is a signature and F = {F1, . . . , Fn}

represents a set of n modifiable structural equations. S = (U,V, R) is a signature if and
only if U is a finite set of exogenous variables, V = {V1, . . . , Vn} is a set of n endogenous
variables disjoint from U , and R: U ∪ V → R assigns each variable X in U ∪ V its range
R (X) ⊆ R.W = ×X∈U∪V R (X) is the set of possible worlds.
F = {F1, . . . , Fn} represents a set of n modifiable structural equations if and only

if each Fi is a function from Wi = ×X∈U∪V\{Vi } R (X) into the range R (Vi ) of the
endogenous variable Vi . A causal model M = (S,F) is acyclic if and only if there is

1 For a quite different way of relating ranking functions and structural equations via causation see
Spohn (2010).
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no cycle Vi1, . . . , Vim, Vi1 in V such that the value of Fi( j+1) depends on R
(
Vi j

)
for j =

1, . . . , m − 1, and the value of Fi1 depends on R (Vim). Dependence is functional depen-
dence: Fi depends on R

(
Vj

)
just in case there are �wi and �wi

′ inWi = ×X∈U∪V\{Vi } R (X)
that differ only in the value from R

(
Vj

)
such that Fi ( �wi ) � Fi

( �wi
′).

Let Pa (Vi ) be the set of exogenous or endogenous variables X in U ∪ V such that
Fi depends on R (X). The members of Pa (Vi ) are called the parents of the endogenous
variable Vi . Let An (Vi ) be the ancestral, or transitive closure, of Pa (Vi ), which is defined
inductively as follows. Pa (Vi ) ⊆ An (Vi ); and if V ∈ An (Vi ), then Pa (V ) ⊆ An (Vi ).
The members of An (Vi ) are called the ancestors of the endogenous variable Vi . They are
the parents of Vi , Pa (Vi ), and the parents of all parents (but excluding Vi itself, unless the
model is cyclic).

A context is a specification of the values of all exogenous variables and so can be
formalized as a vector �u in R (U) = ×U∈U R (U ). A basic fact about causal models is
that every acyclic causal model has a unique solution for any context. An acyclic causal
model can be represented by a directed acyclic graph whose nodes are the exogenous and
endogenous variables in U ∪ V and whose arrows point into each endogenous variable Vi

from all of the latter’s parents in Pa (Vi ).
The signature provides the framework or language of the model. It contains more struc-

ture than a set of possible worlds because there is a distinction between exogenous and
endogenous variables. What may be even more important is the way one understands these
variables. I understand them as singular variables and briefly want to explain why.

Philosophers such as Woodward (2003), following the lead of Spirtes et al. (2000) and
Pearl (2009), are mainly interested in causal relevance between properties rather than actual
causation between events (or, more cautiously, the relata of actual causation; see Paul,
2000). That is, they understand the variables in the generic way they are understood in
science, especially those areas of science that rely on statistical methods, as assigning
values to a population of individuals from which one can draw samples. For instance,
the population may be the set of people at a certain age and in a certain geographical
region, and the generic variable may assign values to these individuals—say, value i is
assigned to an individual in that population if i mg ibuprofen are administered to that
individual. With this generic understanding of the variables it might indeed be possible to
test counterfactual claims of what would happen under certain interventions by “carry[ing]
out the interventions described in the[...] antecedents and then check[ing] to see whether
certain correlations hold” (Woodward, 2003, 72–73). For instance, it might indeed be
possible to test the causal relevance claim that the administration of ibuprofen causes relief
of pain by carrying out the intervention of administering a certain number of mg ibuprofen
to some select subgroup of the population and then checking if pain is relieved in the
members of that group.2

However, we cannot use generic variables if we want to construct a set of possible worlds
in the way we have done above. In order to understand the Cartesian product of all possible
values of all variables as a set of possible worlds we have to understand the variables in
a singular sense. Otherwise, the resulting possibilities are not exclusive. For instance, the

2 It is not entirely clear to me how Woodward (2003) can distinguish between the test of a
counterfactual conditional, the test of an indicative conditional, and the test of a claim about
conditional probabilities. How to empirically test or confirm counterfactuals on the account
presented in section §4 is explained in Huber (ms 1).
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variable may assign value i to a possible world if i mg ibuprofen are administered to me at
noon on July 1, 2014, in that possible world. By moving from generic variables to singular
variables we may lose some connection to science, but we get closer to philosophy. The
reason is that now we can understand better the counterfactual claims implicit in a causal
claim. Here is how.

If we can interpret the Cartesian product of all possible values of all variables as a
set of possible worlds, then we can rely on a well-developed theory of counterfactuals.
According to that theory a counterfactual conditional of the from ‘if A were the case, then
C would be the case’ is true at a world if C is true in all worlds of a certain subset of the
A-worlds. This understanding of counterfactuals is not obviously available if we work with
generic variables. The reason is that it is not obvious how to construct possible worlds out
of generic variables. And even if one has succeeded in constructing possible worlds out of
generic variables, it is not obvious how to understand counterfactuals in the sense of this
theory while still be able to test them in the way envisaged by Woodward (2003) and
sketched above.

Another reason why it is important to understand the variables of the causal model as
singular variables is that the restriction to acyclic causal models, which will be important
later on, is only plausible for singular variables. For generic variables acyclicity is clearly
false. A related point is made by Kistler (forthcoming).

Pearl (2009, chap. 10), Hitchcock (2001), Woodward (2003, sect. 2.7) and Halpern &
Pearl (2005a) have provided increasingly sophisticated definitions of actual causation in
terms of acyclic causal models (the particular way these authors formalize causal models
differs in detail). However, Hiddleston (2005) presents two acyclic causal models where the
“intuitively correct” causal judgments differ, even though the two models are isomorphic
(two examples illustrating this point will be presented in the next section). As Halpern
(2008) puts it: “there must be more to causality than just the structural equations.” I refer
to this claim as the insufficiency thesis: structural equations representing the “(causal) laws”
or mechanisms of a model are insufficient for causality.

In order to solve this problem, Hall (2007) and Hitchcock (2007) distinguish between
normal or default values and abnormal or deviant values of a variable. In Halpern (2008)
and Halpern & Hitchcock (2010), these defaults are modeled in terms of ranking functions
(Spohn, 1988). The latter are defined as follow. A function � : W → N is a ranking
function if and only if � assigns rank 0 to at least one possible world w in W . Usually
ranking functions are interpreted epistemically as grades of disbelief, and then their defin-
ing clause is a consistency constraint saying that one should not disbelieve every possible
world. A ranking function � on the set of possible worlds W is extended to a function
�+ : ℘ (W) →N∪ {∞} on the powerset of (the propositions over)W , ℘ (W), by setting
�+ (A) = min {� (w) : w ∈ A ⊆W} and �+ (∅) = ∞. I will abuse notation and write ‘�’
instead of ‘�+’.
M = (S,F, �) is an extended (acyclic) causal model if and only if (S,F) is a(n)

(acyclic) causal model and � is a ranking function onW . As suggested—unintentionally,
but nevertheless appropriately—by Halpern (2008, sect. 4), the ranking function � should
be indexed to the set of contexts, because what is normal may vary from context to context.
Thus, extended (acyclic) causal models really are of the formM = (S,F, (��u)�u∈R(U)

)
,

where R (U) = ×U∈U R (U ) is the set of all contexts or specifications of the values of all
exogenous variables.

The definition of actual causation then runs as follows (Halpern & Hitchcock, 2010:
sect. 3). X1 = x1 ∧ . . . ∧ Xk = xk , or simply: �X = �x , is an actual cause of φ in the
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extended acyclic causal modelM = (S,F, (��u)�u∈R(U)

)
in context �u if and only if:

1. �X = �x and φ are true inM in �u.
2. There is a partition

{ �Z , �W}
of the endogenous variables V with �X ⊆ �Z , and there

are vectors of values �x ′ and �w of �X and �W , respectively, with ��u
( �X = �x ′ ∧ �W =

�w) ≤ ��u (w�u) such that: if �Z = �z∗ is true inM in �u, then

(a) �X = �x ′ ∧ �W = �w�SE ¬φ is true inM in �u; and
(b) for all �W − ⊆ �W and all �Z− ⊆ �Z : �X = �x ∧ �W − = �w ∧ �Z− = �z∗ �SE φ is

true inM in �u.

3. There is no proper subset �X− of �X such that 1. and 2. hold for �X−.

In order to understand this definition, we need to know the truth conditions for coun-
terfactuals of the form �X = �x �SE φ in an extended acyclic causal model M in a
context �u. It is these counterfactuals that are my main target. In what follows I ignore the
use/mention distinction whenever possible so that the notation does not become even more
cumbersome.

For an endogenous variable X in V and a value x in R (X), X = x is an atomic
sentence. An atomic sentence X = x is true in M in �u just in case all solutions to
the equations represented by F assign value x to the endogenous variable X when the
exogenous variables are set to �u. Since we are restricting the discussion to extended acyclic
causal models which have a unique solution in any given context, this means that X = x is
true inM in �u if and only if x is the value of X in the unique solution to all equations in
M in �u. The truth conditions for negations and conjunctions are given in the usual way.

A counterfactual X1 = x1 ∧ . . . ∧ Xk = xk �SE φ, or simply: �X = �x �SE φ,

is true inM in �u just in case φ is true inM �X=�x =
(
S �X ,F �X=�x

)
(but the same �u). The

latter model results fromM by replacing the equations for Xi by the equations Xi = xi ,
i = 1, . . . , k. Formally, this means two things (i–ii).

(i) The signature S is reduced to S �X = (U,V \ {X1, . . . , Xk} ,R |U∪V\{X1,...,Xk }
)
, where

R |U∪V\{X1,...,Xk } isR with its domain restricted from U ∪ V to U ∪ V \ {X1, . . . , Xk}.
(ii) F is reduced to F �X=�x which results from F by deleting the functions FXi represent-

ing the equations for Xi and by changing the remaining functions FY in F \ {
FX1 , . . . ,

FXk

}
as follows. First, restrict the domain of each FY from ×X∈U∪V\{Y } R (X) to

×X∈U∪V\{Y,X1,...,Xk } R (X). Second, replace FY by F �X=�x
Y which results from FY by setting

X1, . . . , Xk to x1, . . . , xk , respectively.
While this definition is fairly complicated, the idea behind it is quite simple. In eval-

uating the counterfactual �X = �x �SE φ in model M in context �u, first validate the
antecedent by deleting the equations for the endogenous variables �X and setting their
values to �x . In a second step set the exogenous variables to �u and let the remaining
equations determine the values of the remaining endogenous variables. In a third step check
if the resulting solution yields the right value for φ.

The equations represent the “(causal) laws” or mechanisms of the model. It is important
to stress the relativity to the model and that laws, as understood here, may fail to meet
many of the traditional criteria for lawfulness (Woodward, 2003, chap. 6). The laws of
the model can represent the workings of your fridge, the economics of the food market in
the country I live in, the laws of gravitation of some planetary system, or Schrödinger’s
equation.
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Several features of the formal language from above are worth being pointed out. First,
all sentences are built up from endogenous variables. Second, Structural-Equations-
counterfactuals or SE-counterfactuals cannot be iterated (embeddings can be defined,
though, as shown by Halpern, 2013). Third, the antecedents of SE-counterfactuals are
restricted to nonempty conjunctions of atomic sentences, although the consequents of
SE-counterfactuals can be arbitrary Boolean combinations of atomic sentences.

As Halpern and Hitchcock (2010) note, the introduction of defaults makes the notion
of actual causation doubly “subjective” (Halpern & Hitchcock, 2010, 384) or relative:
judgments of actual causation depend on the choice of the exogenous and endogenous
variables and on the choice of the default values for these variables. Let us look at their
FIRE example.

Endogenous variable L takes on the value 1 if there is lightning, and 0 otherwise.
Endogenous variable M takes on the value 1 if there is an arsonist dropping a lit match,
and 0 otherwise. Endogenous variable F takes on the value 1 if there is a forest fire, and 0
otherwise. Furthermore exogenous variable (UL , UM ) determines the values of L and M .
The functions FL : ((i, j) , m, f ) �→ i , FM : ((i, j) , l, f ) �→ j , and FF : ((i, j)) , l, m) �→
max {l, m} describe the following equations:

• (UL , UM )
• L = UL

• M = UM

• F = L ∨ M

According to Halpern and Hitchcock (2010), in the context where UL = 1 and UM = 1 so
that there is lightning (L = 1) and there is an arsonist dropping a lit match (M = 1) and
there is a forest fire (F = 1), the arsonist’s dropping a lit match (M = 1) is an actual cause
of the forest fire (F = 1). This is so, because:

1. M = 1 and F = 1 are true inM in (uL , uM ) = (1, 1).
2. For the partition {{M, F} , {L}} and the values 0 and 0 of M and L we have

�(1,1) (M = 0 ∧ L = 0) ≤ �(1,1)

(
w(1,1)

)
and: (M, F) = (1, 1) is true in M in

(1, 1) and

(a) M = 0 ∧ L = 0�SE F � 1 is true inM in (1, 1), and so are
(b) M = 1�SE F = 1, M = 1 ∧ F = 1�SE F = 1, M = 1 ∧ L = 0�SE

F = 1, M = 1 ∧ L = 0 ∧ F = 1�SE F = 1.

3. There is no proper subset of {M} such that 1. and 2. hold.

The relevant inequality for the ranking function �(1,1) says that the most typical world
where there is no lightning and no arsonist dropping a lit match is at least as typical as the
actual world where there are lightning and an arsonist dropping a lit match and a forest fire.
This equation holds (in the context where UL = 1 and UM = 1) for the following reason.
It is more typical that there is no lightning (L = 0) than that there is lightning (L = 1). It
is more typical that there is no arsonist dropping a lit match (M = 0) than that there is an
arsonist dropping a lit match (M = 1). It is more typical that there is no forest fire (F = 0)
than that there is a forest fire (F = 1).

In addition to this the structural equations seem to put a constraint on the ordering of
normality or typicality. Even though it is more typical that there is no forest fire than that
there is a forest fire, it is more typical that there is lightning and a forest fire than that there
is lightning and no forest fire. Similarly, even though it is more typical that there is no forest
fire than that there is a forest fire, it is more typical that there are an arsonist dropping a lit
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match and a forest fire than that there is an arsonist dropping a lit match and no forest fire.
Finally, even though it is more typical that there is no forest fire than that there is a forest
fire, it is much more typical that there are lightning and an arsonist dropping a lit match
and a forest fire than that there are lightning and an arsonist dropping a lit match, but there
is no forest fire. And this is so no matter which context we are in.

More generally, the structural equations seem to put the following constraint on the
ordering of normality or typicality. It seems that worlds which violate an equation are less
typical than worlds that obey all equations (the latter are called “legal” in Glymour et al.,
2010). And it seems that worlds violating certain equations and then some are less typical
than worlds violating only certain equations.

It is easy to see, though, that this constraint does not hold for equations such as L = UL

and M = UM , if only because we do not know what UL and UM stand for. However,
it would be wrong to take this as a reason to reject the constraint that the structural
equations seem to put on the ordering of normality or typicality. The fact that the constraint
does not hold for equations such as L = UL and M = UM should rather be taken as a
reason to reject the above model.

Let me explain. The only reason Halpern and Hitchcock (2010) include the “dummy
variables” UL and UM and the “dummy equations” U = UL and U = UM is that they
want to say that L = 1 and M = 1 are actual causes of F = 1, but cannot do so unless both
L and M are endogenous variables. Besides that these variables and equations do no work
and could be dropped if the artificial restriction were not in place that only endogenous
variables can be causally efficacious. If that restriction were not in place, L and M would
be the exogenous variables, and F = L ∨ M the only equation. Indeed, this is the model
one would use in the framework of Hitchcock (2007).

§3. Generalizing causal models. FIRE example, version 2:
Let exogenous variable L take on the value 1 if there is lightning, and 0 otherwise. Let

exogenous variable M take on the value 1 if there is an arsonist dropping a lit match,
and 0 otherwise. Let endogenous variable F take on the value 1 if there is a forest fire,
and 0 otherwise. The function FF : (l, m) �→ max {l, m} describes the following equation:

• L
• M
• F = L ∨ M

In this model it is true that worlds that violate an equation are less typical than worlds that
obey all equations. My first proposal therefore is to relax the restriction in the (extended
acyclic) causal models of Halpern (2008) and Halpern and Hitchcock (2010) and define an
atomic sentence to be of the form X = x for an exogenous or endogenous variable X in
U∪V and a value x in R (X). Then we do not have to include arbitrary exogenous variables
to render L and M endogenous and thus be able to state counterfactual and causal claims
with them.

For this to make sense we have to define the truth conditions for sentences in a slightly
different way. An atomic sentence X = x is true inM in �u just in case all solutions to the
equations represented by F when the exogenous variables are set to �u assign value x to the
exogenous or endogenous variable X . Since we keep restricting the discussion to acyclic
models which have a unique solution in any context, this means that X = x is true inM
in �u if and only if x is the value of X in the unique solution to all equations inM in �u. The
truth conditions for negations and conjunctions are again given in the usual way.
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A counterfactual X1 = x1 ∧ . . . ∧ Xk = xk �SE φ, or simply: �X = �x �SE φ, is true

inM in �u just in case φ is true inM �X=�x =
(
S �X ,F �X=�x

)
in �u �X=�x . The latter model and

context result fromM and �u by replacing the equations for Xi by the equations Xi = xi ,
i = 1, . . . , k. Formally, this means two things (i–ii). (i) The signature S is reduced to
S �X = (U,V \ {X1, . . . , Xk} ,R |U∪(V\{X1,...,Xk })

)
, whereR |U∪(V\{X1,...,Xk }) isR with its

domain restricted from the original U ∪ V to those variables U ∪ (V \ {X1, . . . , Xk}) that
remain after deleting the endogenous variables among {X1, . . . , Xk}.

(ii) F is reduced to F �X=�x which results from F by deleting the functions FXi represent-
ing the equations for the endogenous Xi and by changing the remaining functions FY inF\{

FX1 , . . . , FXk

}
as follows. First, restrict the domain of each FY from ×X∈U∪V\{Y } R (X)

to ×X∈U∪(V\{Y,X1,...,Xk }) R (X). Second, replace FY by F �X=�x
Y which results from FY by

setting X1, . . . , Xk to x1, . . . , xk , respectively.
The new context �u �X=�x results from the original context �u as follows. First, set the values

of the exogenous variables among {X1, . . . , Xk} to x1, . . . , xk , respectively. Second, leave
the values of the other exogenous variables in U \ {X1, . . . , Xk} as they are in �u.

The definition of actual causation has to be changed slightly: in clause (2) we consider
a partition of all variables, exogenous or endogenous, U ∪ V rather than a partition of the
endogenous variables V only.

The SURVIVAL example (Halpern & Hitchcock, 2010, 400) explains why we need
ranking functions in addition to the structural equations. Let exogenous variable A take on
the value 1 if Assassin does not put in poison, and 0 otherwise. Let exogenous variable B
take on the value 1 if Bodyguard puts in antidote, and 0 otherwise. Let endogenous variable
S take on the value 1 if Victim survives, and 0 otherwise. The function FS : (a, b) �→
max {a, b} describes the following equation:

• A
• B
• S = A ∨ B

The structural equation for the SURVIVAL example is isomorphic to that for the FIRE
example, version 2. However, people have different intuitions about the correct causal judg-
ment for these two examples. In the FIRE example, version 2 people say that the arsonist’s
dropping a lit match is an actual cause of the forest fire if there are lightning and an arsonist
dropping a lit match (and a forest fire). In the SURVIVAL example people do not say that
Bodyguard’s putting in antidote is an actual cause of Victim’s survival, if Bodyguard puts
in antidote and Assassin does not put in poison (and Victim survives). This difference in
people’s intuitions about the correct causal judgment is explained by appeal to normality
or typicality. While the structural equation for the SURVIVAL example is isomorphic to
that for the FIRE example, version 2, the ordering of normality or typicality for the former
differs from that of the latter in the following way.

It is more typical that Assassin does not put in poison (A = 1) than that Assassin puts
in poison (A = 0). It is more typical that Bodyguard does not put in antidote (B = 0) than
that Bodyguard puts in antidote (B = 1). It is more typical that Victim survives (S = 1)
than that Victim does not survive (S = 0). In addition to this the structural equation seems
to put a constraint on the ordering of normality or typicality. Even though it is more typical
that Victim survives than that Victim does not survive, it is more typical that Assassin puts
in poison and Bodyguard does not put in antidote and Victim does not survive than that
Assassin puts in poison and Bodyguard does not put in antidote and Victim survives.
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This helps us see why Bodyguard’s putting in antidote is no actual cause of Victim’s
survival, if Bodyguard puts in antidote and Assassin does not put in poison and Victim
survives, A = 1, B = 1, and S = 1.

1. B = 1 and S = 1 are true inM in (a, b) = (1, 1); but
2. for the partition {{B, S} , {A}} (and any other partition) there are no values b and a

of B and A with �(1,1) (B = b ∧ A = a) ≤ �(1,1)

(
w(1,1)

)
and: (B, S) = (1, 1)

is true inM in (1, 1) and

(a) B = b ∧ A = a �SE S � 1 is true inM in (1, 1), and so are
(b) B = 1 �SE S = 1, B = 1 ∧ S = 1 �SE S = 1, B = 1 ∧ A = a �SE

S = 1, B = 0 ∧ A = a ∧ S = 1�SE S = 1; and

3. there is no proper subset of {B} such that 1. and 2. hold.

The reason is that the values b and a of B and A needed for B = b ∧ A = a � S � 1
to come out true inM in (1, 1) are 0 and 0. However, any world in which Bodyguard does
not put in antidote and Assassin puts in poison, that is, where B = 0∧ A = 0 is true, is less
typical than the actual world w(1,1) where Bodyguard puts in antidote and Assassin does
not put in poison—or so Halpern and Hitchcock (2010, sect. 5) claim.

In fact, however, this is not true for the ranking function used by Halpern and Hitchcock
(2010). Their ranking function assigns rank 1 to both the world that would be needed where
Bodyguard does not put in antidote and Assassin puts in poison, as well as to the actual
world where Bodyguard puts in antidote but Assassin does not put in poison. What is true,
though, is that the world that would be needed where Bodyguard does not put in antidote
and Assassin puts in poison is less typical than the most typical world where Assassin does
not put in poison, viz. the world where Bodyguard does not put in antidote and Assassin
does not put in poison.

We therefore have to slightly adjust the definition of actual causation (in the spirit of
Hitchcock, 2007, who also refers to the actual value of �W rather than the actual world) as

follows: in condition (2), ��u
( �X = �x ′ ∧ �W = �w

)
≤ ��u

( �W = �w �u
)

, where �w�u is the actual

value of �W in modelM in context �u.
For the sake of completeness I state the slightly revised definition of actual causation in

extended acyclic causal models: X1 = x1 ∧ . . . ∧ Xk = xk , or simply: �X = �x , is an actual
cause of φ in the extended acyclic causal modelM = (S,F, (��u)�u∈R(U)

)
in context �u if

and only if:

1. �X = �x and φ are true inM in �u.
2. There is a partition

{ �Z , �W
}

of all variables, exogenous or endogenous, U ∪ V with

�X ⊆ �Z , and there are vectors of values �x ′ and �w of �X and �W , respectively, with

��u
( �X = �x ′ ∧ �W = �w

)
≤ ��u

( �W = �w�u
)

such that: if �Z = �z∗ is true in M in �u,

then

(a) �X = �x ′ ∧ �W = �w�SE ¬φ is true inM in �u; and
(b) for all �W − ⊆ �W and all �Z− ⊆ �Z : �X = �x ∧ �W − = �w ∧ �Z− = �z∗ �SE φ

is true inM in �u.

3. There is no proper subset �X− of �X such that 1. and 2. hold for �X−.

This completes the first step of my argument as it was outlined in section §1. In a second
step I now want to step back from Halpern and Hitchcock’s (2010) interpretation of the
ranking functions ��u . Instead of interpreting them solely in terms of normality or typicality,
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I propose to interpret them as that notion—let us call it (counterfactual) distance—that
gives truth conditions to counterfactuals. In the way I propose to interpret them, ranking
functions represent a modality, the modality of counterfactuality, that is as objective as
counterfactuals are. Therefore, I refer to them as objective ranking functions.

Counterfactual distance figures as a primitive on my account. It is the same notion that
Stalnaker (1968) and Lewis (1973b, 1979) interpret in terms of overall similarity between
possible worlds. While I do not think that overall similarity is an adequate interpretation of
counterfactual distance (else I would not treat the latter as primitive), it may be helpful to
the reader to think of objective ranking functions as formalizing overall similarity.

This formalization in terms of objective ranking functions differs slightly3 from
Stalnaker’s (1968) formalization in terms of selection functions and from Lewis’ (1973b)
formalization in terms of a system of spheres. However, these slight differences do not
affect the logic of counterfactuals in any way that is relevant for present purposes.4

Interim report: I have taken Halpern’s (2008) notion of an extended (acyclic) causal
model in terms of which Halpern and Hitchcock (2010) define actual causation. First I have
slightly generalized these models by indexing the ranking functions in them to the contexts
rather than assuming one fixed ranking function for all contexts. Then I have further
generalized these models in the spirit of Hitchcock (2007) by dropping the restriction
that only endogenous variables can be causally efficacious. Finally, after fixing a small
bug in the definition of actual causation I have reinterpreted the ranking functions in these
generalized extended (acyclic) causal models objectively as that notion which gives truth
conditions to counterfactuals. This completes the first and second step of my argument as
it was outlined in the Introduction. In the next three sections I will carry out the third step.

§4. Laws and counterfactuality. As stressed by Collins et al. (2004, 2ff) the logical
properties of the counterfactual conditional do not suffice for a counterfactual theory of
causation, if only because they do not exclude backtracking counterfactuals. This is why
Lewis (1979) imposes four constraints on the similarity relation that is governing the logic
of counterfactuals on his account, in addition to its defining features that fix the logical
properties of the counterfactual conditional via the system VC.

I will impose two constraints as well.5 The first constraint concerns the relation between
structural equations and ranking functions and is a strong-dominance version of Lewis’
(1979, 472) conditions that “[i]t is of the first importance to avoid big, widespread, diverse
violations of law” and that “[i]t is of the third importance to avoid even small, localized,
simple violations of law”, except that it is relative to the causal model (see Menzies, 2004).

We start with some terminology relative to an extended acyclic causal model M =(S,F, (��u)�u∈R(U)

)
. Say that a world w = (�u, v1, . . . , vn) violates the equation for the

3 The difference is that the limit assumption, which is rejected by Lewis (1973b), holds on the
formalization in terms of objective ranking functions.

4 One reason why I think that similarity is not an adequate interpretation of counterfactual distance
is that the axiom(s) of strong centering (and weak centering) come out as (analytic) truths on this
interpretation. I think that neither strong centering nor weak centering holds for counterfactuals.
For criticism of similarity see Hàjek (ms). For criticism of weak centering and strong centering
see Leitgeb (2012a, 2012b) and Menzies (2004, sect. 6).

5 In stressing that it is an art to come up with an appropriate model for a given scenario or case
Hitchcock (2007) states various constraints on appropriate models. His constraints concern the
relation between the model and the case to be modeled. In contrast to these the constraints
I impose are inherent to the model and independent of the case to be modeled.
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endogenous variable Vi if and only if vi � Fi (�u, v1, . . . , vi−1, vi+1, . . . , vn). Let V∗ (w) ⊆
V be the set of endogenous variables Vi such that w violates the equation for Vi . Next say
that a world w weakly Halpern-dominates a world w′ if and only if for each endogenous
variable X ∈ V∗ (w)\V∗ (

w′) there is an endogenous variable X ′ ∈ V∗ (
w′)\V∗ (w) such

that X ′ ∈ An (X). Finally, say that a world w strongly Halpern-dominates a world w′ if
and only if w weakly Halpern-dominates w′, but w′ does not weakly Halpern-dominate w
(and so V∗ (

w′) \ V∗ (w) is not empty).
Now we are in a position to formulate our first constraint. The idea is that worlds that

violate certain equations and then some are (counterfactually) more distant than worlds
that violate only certain equations. However, since a violation of the equation for an en-
dogenous variable early on in the causal hierarchy affects everything causally downstream
of that variable, a violation early on is worse—infinitely worse—than a violation later on.
If we adopt the terminology of Lewis (1979), a violation of an equation early on in the
causal hierarchy amounts to an infinitely bigger miracle than a violation of an equation
later on. This is why the first constraint has to be stated in terms of ancestors.6

An extended acyclic causal model M = (S,F, (��u)�u∈R(U)

)
respects the equations if

and only if the following holds for all worlds w and w′ in W: if w strongly Halpern-
dominates w′, then it holds for all contexts �u in R (U): ��u (w) < ��u

(
w′).7

The idea behind respect for the equations is quite simple. First associate with each
world the set of endogenous variables whose equation the world violates. Then, when com-
paring two given worlds for (counterfactual) distance, ignore those endogenous variables
whose equations are violated by both worlds. Finally check whether, among the remaining
endogenous variables, for each endogenous variable whose equation is violated by the
first world there is an endogenous variable that is causally upstream and whose equation
is violated by the second world. In addition, check whether the converse is not true. In
other words, check if any violation in the first world is compensated for by a violation in
the second world that is worse, because it is further up in the causal hierarchy. In addition
check if the converse is not true. If so, then the first world is (counterfactually) less distant,
or closer, to any world than the second world. If the second world violates all the equations
that are violated by the first world and then some we have the special case where, after
ignoring the common violations, no violations in the first world are left.

We are approaching the summit of this paper. My aim is to show that by objectively
interpreting the ranking functions in them, causal models respecting the equations can be
subsumed under so called “counterfactual models” because the ranking functions thus
interpreted yield all structural equations. In fact, counterfactual models give us more than
causal models, because they define truth conditions for counterfactuals with arbitrary
antecedents, something that is hard to come by in the structural equations approach (Briggs,
2012; Halpern, 2008, sect. 5). Furthermore, in counterfactual models counterfactuals may

6 Woodward (2003, 141) can be read as endorsing our first constraint when he points to the
following “important general difference between Lewis’s scheme and the manipulationist picture.
On the manipulationist account [...] ”[l]ate” miracles, even numerous, are automatically preferred
to “early” miracles, even if single. By contrast, in Lewis’s theory, whether we [...] insert many
late miracles [...] or whether instead we [insert some early miracle] [...] depends on whether
[the effects] have many causes or just one. This sort of sensitivity leads to the insertion of miracles
in what, intuitively, is the wrong place.”

7 The formulation of respect for the equations has undergone several changes. The present one is
due to Joseph Y. Halpern, for whose many most helpful comments and suggestions I am very
grateful.
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not only be embedded but can also be iterated. Finally, the sentences in the formal language
for counterfactual models are built up from exogenous and endogenous variables.

Here is the definition. M∗ = (S, (�w)w∈W
)

is a counterfactual model if and only if
S = (U,V, R) is a signature and, for each world w in W , �w : W → N is a ranking
function onW . Rather than indexing the ranking functions to the context �u or the “legal”
world w�u determined by that context, ranking functions are now indexed to the set of
all possible worlds. The reason is that truth is a relation between sentences and possible
worlds, and not between sentences and contexts (or between sentences and “legal” worlds).
This makes it necessary to be explicit about the exogenous variables. From now on U is
the set of m exogenous variables {U1, . . . , Um}.

An atomic sentence Xi = x , i = 1, . . . , m + n, is true in M∗ in world w ∈ W if
and only if w ∈ {(u1, . . . , um, v1, . . . , vm) = (x1, . . . , xm+n) ∈W : xi = x}. Negations
and conjunctions are defined as usual, and where φ and ψ are arbitrary sentences, the
counterfactual φ� ψ is true in the counterfactual modelM∗ in the world w just in case
all �w-minimal φ-worlds are ψ-worlds. The system V is sound and complete with respect
to this semantics (Huber, ms 2).

In a causal model the structural equations are given and then used to define truth condi-
tions for a limited set of counterfactual conditionals. In a counterfactual model the counter-
factual conditionals are given via the ranking functions �w. Therefore, we have to say what
it means for a structural equation represented by some function F to hold in a counterfac-
tual model. For this we first restrict the functions F to those fromWi = ×X∈U∪V\{Vi } R (X)
into R (Vi ), for some endogenous variable Vi from V . Call such a function eligible for Vi .

A function F : Wi → R (Vi ), which is eligible for Vi , holds in a counterfactual model
M∗ just in case, for every world w inW , the following counterfactuals are all true inM∗
in w: �U ∪ V \ {Vi } = �wi � Vi = Fi ( �wi ), where �wi is inWi . For an eligible function F
to hold in a counterfactual model the above counterfactuals must be true in every world in
that model. In contrast to counterfactuals in general, whose truth value is world-dependent,
the structural equations hold world-independently. In this sense they are necessarily true.
Therefore, talk of “(causal) laws” is appropriate.

My thesis is that the one modality of counterfactuality suffices for actual causation and
causality in general. We have seen why to subscribe to the insufficiency thesis according to
which “there must be more to causality than just the structural equations.” We should not
infer from the insufficiency thesis that we need a second modality. What we should infer
from the insufficiency thesis is that the limited set of counterfactuals we get from the struc-
tural equations is not enough to represent the one relevant modality of counterfactuality.

To put it bluntly: structural equations are insufficient and unnecessary for causality. They
are insufficient because they do not give us all counterfactuals, and because they do not
give us all correct causal claims. They are unnecessary because we get them for free once
we have moved beyond them, on to objective ranking functions. This is the content of
the following theorem, which completes the first part of the third step of my argument
as it was outlined in section §1. The second part of the third step follows in the next chapter.

THEOREM 4.1. For each extended acyclic causal modelM = (S,F, (��u)�u∈R(U)

)
which

respects the equations there is a counterfactual modelM∗ = (S, (�w)w∈W
)

such that:

SE Fi holds inM iff Fi holds inM∗

D For all �u ∈ R (U) and all w ∈W: ��u (w) = �w�u (w), where w�u is the unique solution
to all equations inM in �u.

Proof. Appendix 7.1. �
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§5. Counterfactuality and actuality. Let us look at the counterfactual models for
our two examples if we use the ranking functions from Halpern and Hitchcock (2010) and
evaluate counterfactuals in terms of them rather than the structural equations.

In the SURVIVAL example it is false in the actual context where Assassin does not put
in poison and Bodyguard puts in antidote (and Victim survives) that Victim would not
survive if Bodyguard did not put in antidote, B = 0 � S � 1. The reason is that one
of the (counterfactually) least distant, or closest, worlds where Bodyguard does not put in
antidote, viz. the world where Bodyguard does not put in antidote, Assassin does not put
in poison, and Victim survives, is a world where Victim survives.

In the FIRE example, version 2 it is true in the actual context where there are lightning
and an arsonist dropping a lit match (and a forest fire) that there would be no forest fire if
there were no arsonist dropping a lit match, M = 0 � F � 1. The reason is that all the
(counterfactually) least distant, or closest, worlds where there is no arsonist dropping a lit
match, viz. the world where there is no arsonist dropping a lit match, no lightning, and no
forest fire, are also worlds where there is no forest fire.

This means that Theorem 4.1 is not enough. For it is not true that there would be no
lightning if there were no arsonist dropping a lit match. On the contrary, even if there were
no arsonist dropping a lit match, there would still be lightning, and hence there would still
be a forest fire. This is also how the counterfactual M = 0 �SE F � 1 is evaluated
according to the structural models approach of Halpern and Hitchcock (2010).

This highlights the fact that the counterfactuals defined in terms of the structural equa-
tions of a causal model and the counterfactuals defined in terms of a counterfactual model
may differ even if all and only the structural equations of the causal model hold in the
counterfactual model. So far the only counterfactuals the two approaches agree on are
those with maximally specific antecedents: �U ∪ V \ {Vi } = �wi �(SE) Vi = Fi ( �wi ),
where �wi is inWi . These are the necessarily true “(causal) laws” that are true in all worlds
or contexts.

Defeat is not the appropriate reaction to this mismatch, though. What the mismatch
shows is that we cannot define a counterfactual φ� ψ to be true in a world w in a model
M if and only if all �w-minimal antecedent worlds are consequent worlds and interpret �w

solely in terms of normality or typicality. For that means that φ � ψ is true if φ-worlds
normally are ψ-worlds. And that is not right. More specifically, that is too weak.

The LIGHTNING example due to Christopher R. Hitchcock (personal correspondence)
helps us see what is still missing to get the counterfactuals right. Let exogenous variable L
take on the value 1 if there is lightning, and 0 otherwise. Let endogenous variable F take
on the value 1 if there is a forest fire, and 0 otherwise. The function FF : l �→ f describes
the following equation:

• L

• F = L

The equation says that there would be a forest fire if there were lightning. In the context
where there is lightning, L = 1, we want to say that (even) if there were no forest
fire there would (still) be lightning, F = 0 � L = 1. That is, we do not want our
counterfactuals to backtrack. However, the world where there is lightning and no forest
fire violates the equation, whereas the world where there is no lightning and no forest fire
does not. Therefore, if all we require is respect for the equations we get the wrong result
that, in the context where there is lightning, there would be no lightning if there were
no forest fire, F = 0 � L = 0. In order to get the right result that there would (still)
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be lightning, (even) if there were no forest fire, we additionally need to hold fixed what is
actually true in the context of evaluation.

When we formulate the antecedent of a counterfactual we keep fixed as much of the
actual context as is consistent with the antecedent. In the LIGHTNING example we keep
fixed that there is lightning. The same is true of the FIRE example, version 2, where we
also keep fixed that there is lightning. That is why it is true that if there were no arsonist
dropping a lit match there would still be lightning, and hence there would still be a forest
fire.8

Consequently, the second constraint concerns the relation between ranking functions and
actuality. It is a strong-dominance version of Lewis’ (1979, 472) condition that “[i]t is of
the second importance to maximize the spatio-temporal region throughout which perfect
match of particular fact prevails”, except that it is relative to the causal model (again, see
Menzies, 2004).

As before we start with some terminology relative to an extended acyclic causal model
M = (S,F, (��u)�u∈R(U)

)
. Say that a world w = (u1, . . . , um, �v) differs from a world

w+ = (
u+

1 , . . . , u+
m, �v+)

in the value for the exogenous variable Ui if and only if ui � u+
i .

Let U∗
w+ (w) be the set of exogenous variables for whose value w differs from w+. Next

say that a world w weakly dominates a world w′ in terms of focus on a world w+ if and
only if U∗

w+ (w) ⊆ U∗
w+

(
w′). Finally say that a world w strongly dominates a world w′ in

terms of focus on a world w+ if and only if w weakly dominates w′ in terms of focus on
w+, but w′ does not weakly dominate w in terms of focus on w+.

Now we are in a position to formulate our second constraint. The idea is that worlds that
differ from the actual world in the values of certain exogenous variables and then some
are (counterfactually) more distant from the actual world than worlds that differ from the
actual world only in the values for certain exogenous variables. In contrast to the global
constraint of respect for the equations focus on actuality is a local constraint. This is so
because what is actual varies from context to context. And that is why we now quantify
over contexts at the beginning of the relevant clause.

An extended acyclic causal modelM = (S,F, (��u)�u∈R(U)

)
is focused on actuality if

and only if the following holds for all contexts �u in R (U) and all worlds w and w′ inW:
if w strongly dominates w′ in terms of focus on the world w�u , then: ��u (w) < ��u

(
w′).

However, we cannot simply demand of an extended acyclic causal model that it satisfy
focus on actuality in addition to respect for the equations. Focus on actuality is more
important than respect for the equations, as the above example shows. For this reason,
as well as to make sure that the two constraints do not conflict with each other, respect for
the equations has to be restricted to worlds which agree on the values for the exogenous

8 Note that we cannot hold fixed everything that is consistent with the antecedent. Consider the
counterfactual ‘If there were no lightning or no arsonist dropping a lit match, there would still be
a forest fire.’ This counterfactual has no truth-value on the structural models approach, even in its
generalized form, because the antecedent is a disjunction. On our counterfactual models account
this counterfactual does have a truth-value. Its antecedent is consistent with there being lightning.
Its antecedent is also consistent with there being an arsonist dropping a lit match. However, its
antecedent is not consistent with there jointly being lightning as well as an arsonist dropping a lit
match. Thus we cannot hold fixed everything that is consistent with the antecedent.

Nor can we hold fixed only what is common to all antecedent-worlds. For then we would only
consider worlds where there is neither lightning nor an arsonist dropping a lit match. The worlds
we want to consider are such that either there is lightning but no arsonist dropping a lit match,
or else there is no lightning but an arsonist dropping a lit match. For it is those worlds that hold
fixed as much of the actual context as is consistent with the antecedent.
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variables in U . This means that we have a system of priorities rather than a system of
weights (cf. Lewis, 1979, 472; Kroedel & Huber, forthcoming). Its content is that extended
acyclic causal models have to be focused on actuality and subsequently respect the equa-
tions in the following sense. (Note that I have omitted this point in outlining my argument
in the Introduction.)

An extended acyclic causal model M = (S,F, (��u)�u∈R(U)

)
is focused on actuality

and subsequently respects the equations if and only ifM is focused on actuality and the
following holds for all worlds w and w′ in W that agree on the values of the exogenous
variables U : if w strongly Halpern-dominates w′, then it holds for all contexts �u in R (U):
��u (w) < ��u

(
w′).

For extended acyclic causal models which are focused on actuality and subsequently
respect the equations the mismatch between the truth values of counterfactuals in the
structural models approach and in the counterfactual models account disappears. This is
the content of the following theorem.

THEOREM 5.1. For each extended acyclic causal modelM = (S,F, (��u)�u∈R(U)

)
which

is focused on actuality and subsequently respects the equations there is a counterfactual
modelM∗ = (S, (�w)w∈W

)
such that:

C For all statements φ in the language of the generalized version of Halpern and Hitch-
cock (2010) and all contexts �u ∈ R (U):
φ is true inM in �u according to the structural equations approach iff φ is true inM∗
in w�u according to the counterfactual models account.

Proof. Appendix 7.2. �

This almost completes the third step of my argument as it was outlined in section §1.
There is one more twist to the story that will be topic of the next section when we put
things together. However, before doing so I want to present a slightly different formulation
of focus on actuality and subsequent respect for the equations that may be more accessible.

Respect for the equations is a global constraint on the endogenous variables and the
structural equations governing them. Focus on actuality is a local constraint on the exoge-
nous variables and their values in a given context. The distinction between exogenous and
endogenous variables is relative to the model, and an exogenous variable may become
endogenous if one refines a model by including further variables. Therefore, one may
sometimes want to think of the exogenous variables as potentially endogenous, governed
by structural equations that are temporarily set to a constant value for practical purposes,
say, for the model to be simple.

From this point of view, it is natural to adopt the following terminology relative to an
extended acyclic causal model M = (S,F, (��u)�u∈R(U)

)
. Say that the equation for an

exogenous variable U j in context �u = (u1, . . . , um) is represented by the constant function
Fu j :

(
u1 . . . , u j−1, u j+1, . . . , um, �v) �→ u j from ×X∈U∪V\{U j}R (X) into R

(
U j

)
. Next

say that a world w = (u1, . . . , um, �v) violates the equation for the exogenous variable U j

in context �u+ = (
u+

1 , . . . , u+
m

)
if and only if u j � Fu+

j

(
u1, . . . , u j−1, u j+1, . . . , um, �v) =

u+
j . Let X ∗

�u (w) ⊆ U ∪ V be the set of exogenous or endogenous variables X such that
w violates the equation for X (in context �u). Finally say that an extended acyclic causal
model M = (S,F, (��u)�u∈R(U)

)
is respectful if and only if the following holds for all

contexts �u and all worlds w and w′ in W: if for each exogenous or endogenous variable
X ∈ X ∗

�u (w)\V∗
�u
(
w′) there is an exogenous or endogenous variable X ′ ∈ V∗

�u
(
w′)\V∗

�u (w)

such that X ′ ∈ An (X), but the converse does not hold, then: ��u (w) < ��u
(
w′).
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Respectfulness is a mixed constraint on the exogenous and endogenous variables of a
model, the values of the former in a given context, and the structural equations governing
the latter in all contexts. It unifies the prioritized combination of focus on actuality and
subsequent respect for the equations and allows us to state the following (strictly weaker)
corollary of Theorem 5.1.

THEOREM 5.2. For each extended acyclic causal modelM = (S,F, (��u)�u∈R(U)

)
which

is respectful there is a counterfactual modelM∗ = (S, (�w)w∈W
)

such that:

C For all statements φ in the language of the generalized version of Halpern and Hitch-
cock (2010) and all contexts �u ∈ R (U):
φ is true inM in �u according to the structural equations approach iff φ is true inM∗
in w�u according to the counterfactual models account.

§6. Beyond structural equations. It is time to put things together. Typicality and
actuality can come apart. Actuality matters for counterfactuality. So, one might think, even
counterfactual models are insufficient for causality. However, consider Spohn’s (2006)
account of causation. He starts out with a ranking function � over a set of possible worlds
which is generated by a set of singular variables in the same way as ours. Spohn in-
terprets the ranking function � subjectively in terms of grades of disbelief. He defines
actual causation in terms of the conditional ranking function � (· | Hw), where Hw is the
complete history of the actual world w up to right before the effect, but excluding the cause
(a temporal ordering relation over the variables allows Spohn to give a precise definition of
this clause). So the seemingly objective nature of actual causation in this purely subjective
account is partially captured by conditionalizing on what is actually the case.

This paves the way for the final move, suggested by Wolfgang Spohn (personal corre-
spondence). Let us follow Halpern and Hitchcock (2010) in interpreting the unconditional
ranking functions in terms of typicality. Furthermore, suppose our extended acyclic causal
model M = (S,F, (��u)�u∈R(U)

)
respects the equations. Typicality and actuality come

apart in context �u only if the unconditional ranking function ��u and the conditional ranking

function ��u
(
· | �U = �u

)
differ for the rank assigned to some proposition Ui = ui , for some

exogenous variable Ui and some value ui in R (Ui ). But nothing forces us to use the
unconditional ranking function ��u in evaluating counterfactuals in �u. We are free to use
the conditional ranking function ��u

(· | �U = �u)
to evaluate counterfactuals in �u.

Here is a restricted, but hopefully more comprehensible version of the main result de-
tailed below. Suppose the model M with its family of unconditional ranking functions
(��u)�u∈R(U) respects the equations. This implies that the modelM �U with the family of con-

ditional ranking functions
(
��u

(· | �U = �u))
�u∈R(U)

is focused on actuality and subsequently
respects the equations, provided we momentarily exclude the exogenous variables from
the sentences of our language (this assumption will be dropped below). The conditional
ranking functions give us the counterfactuals in the various contexts (or worlds, if we do
not exclude the exogenous variables from the sentences of our language). If two scenarios
or cases agree on the conditional ranking functions and the counterfactuals they represent,
as is the case for the FIRE example, version 2 and of the SURVIVAL example, they may still
differ in the unconditional ranking functions they arise from and the defaults these latter
represent. We do not need to introduce a second element in our model.

In a nutshell causality and counterfactuality interact in the following way. Typicality is
represented by the unconditional or “prior” ranking functions. Counterfactuality includes
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typicality, but goes beyond it by respecting the equations and, in the context of causality,
by being focused on actuality (and subsequently respecting the equations). In the context
of causality, counterfactuality is represented by the conditional or “posterior” ranking
functions that arise from the unconditional ranking functions by conditionalizing on what
is actually the case. Both unconditional as well as conditional ranking functions are to
respect the equations. In addition to this the latter, but not the former, are to be focused
on actuality. As a consequence, the latter, but not the former, do not represent typicality
anymore, if, as may happen, typicality and actuality come apart. As Lewis might put it,
typicality “is of little or no importance” (Lewis, 1979, 472).

Even though conditionalizing on what is actually the case may erase the traces of typ-
icality, we can still refer back to the unconditional roots. This is exactly what we do if
we adopt Halpern and Hitchcock’s (2010) definition of actual causation. In the relevant
clause (2) we use the unconditional ranking function to determine the default values of the
variables, whereas we use the conditional ranking function to determine the truth values
of the counterfactuals. Halpern and Hitchcock (2010) use two different formalisms, viz.
structural equations and ranking functions, to represent the “(causal) laws” and typicality,
respectively. I use just one formalism, viz. objective ranking functions, that, due to its con-
ditional nature, is sufficiently rich to capture both of these dimensions of counterfactuality.9

Things are more complicated if we allow for exogenous variables in the sentences of our
language. Then the following more general move has to be made. TakeM with its family
of unconditional ranking functions (��u)�u∈R(U). Instead of strictly conditionalizing every

��u on �U = �u to obtain the model M �U with its family of conditional ranking functions(
��u

(· | �U = �u))
�u∈R(U)

, merely Shenoy conditionalize every ��u on �U = �u by an appropri-
ately chosen number max to obtain the modelMmax

�U with its family of “Shenoy shifted”

ranking functions
(
��u

(
· ↑ �U = �u

))
�u∈R(U)

.

Shenoy conditionalization is defined as follows. If � : ℘ (W) → N ∪ {∞} is the
unconditional ranking function on the powerset overW , ℘ (W), then the result of Shenoy
conditionalizing � on the proposition A from ℘ (W) by rank k ∈ N ∪{∞}, �A↑k , is defined
as follows. For each B from ℘ (W),

�A↑k (B) = min
{
� (B ∩ A) + 0 − min, �

(
B ∩ A

) + k − min
}
,

where min = min
{
0 + � (A) , k + �

(
A
)}

is a normalization parameter which depends on
the ranking function � which is to be updated, the partition

{
A, A

}
, and the input parame-

ters {0, k} by which the elements A, A of the partition are shifted. The effect of normalizing
by min is that at least one possible world is assigned rank 0 rather than rank min. Strictly
conditionalizing � on A results in the same ranking function as Shenoy conditionalizing
� on A by ∞ so thatM �U = M∞

�U . Shenoy conditionalization was introduced by Shenoy
(1991). It is the ranktheoretic counterpart to probability theory’s Field conditionalization
(Field, 1978).

The family of Shenoy shifted ranking functions in terms of which we evaluate counter-
factuals results from the original family of unconditional ranking functions by a series of
m Shenoy shifts, one for each exogenous variable U j . We start with ��u =: �0 from the

9 It should be noted that this story cannot be told on an account of counterfactuals such as Lewis’
(1973b) or Stalnaker’s (1968) because these accounts lack the operation of conditionalisation:
there are no such things as a conditional sphere of similarity or conditional selection functions.
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family (��u)�u∈R(U), which, following Halpern and Hitchcock (2010), we interpret in terms
of typicality. What we need to do is to Shenoy conditionalize on what is actually the case
in context �u = (u1, . . . , um). We do this by first Shenoy conditionalizing �0 on U1 = u1
by max = max {��u (w) : w ∈W} + 1, which is sufficiently large but finite. This has two
effects. First, all worlds that differ from the actual world w�u in the value for the exogenous
variable U1 are shifted upwards by max − min1, where min1 depends, among others, on
�0. Second, all worlds that agree with the actual world w�u on the value for the exogenous
variable U1 are shifted downwards by min1 (and so at least one of those latter worlds is
assigned rank 0). The result is �0,U1=u1↑max =: �1.

We continue by Shenoy conditionalizing �1 on U2 = u2 by max to obtain
�1,U2=u2↑max =: �2 and so on until we finally arrive at �m−1,Um=um↑max = �m =:
��u

(· ↑ �U = �u)
. �m differs from the original �0 in that worlds that differ from the actual

world w�u in the value for exactly k exogenous variables have been shifted upwards or
further away by k · max , modulo normalization.

The first thing this means is that the model with the Shenoy shifted ranking functions �ms
instead of the unconditional ranking functions ��us is focused on actuality. By the choice
of max every world that differs from the actual world in the value of some exogenous
variable now has a higher rank than any world that agrees with the actual world in the
value of all exogenous variables. More generally, every world that dominates another
world in terms of focus on the actual world is assigned a smaller rank than the dominated
world.10

The second thing this mean is that, in the Shenoy shifted ranking functions �m , the
relative position of two worlds that agree on the values for the exogenous variables is the
same as it is in the unconditional ranking functions ��u (the two worlds are always shifted
together). Therefore, the model with the Shenoy shifted ranking functions �m instead of
the unconditional ranking functions ��u still respects the equations for those worlds that
agree on the values for the exogenous variables.

Therefore, the model Mmax
�U , call it the appropriate Shenoy shift of M on �U , with its

family of Shenoy shifted ranking functions
(
��u

(· ↑ �U = �u))
�u∈R(U)

is focused on actuality
and subsequently respects the equations, if the extended acyclic causal modelM with its
family of unconditional ranking functions (��u)�u∈R(U) respects the equations.

In the same way, we can form the appropriate Shenoy shiftM∗max
�U of a counterfactual

modelM∗. As the proofs of Theorems 4.1 and 5.1 make clear,M∗max
�U constructed in this

way is one of the counterfactual modelsMmax∗
�U that exist for each extended acyclic causal

modelMmax
�U which is focused on actuality and subsequently respects the equations. Thus

we arrive at

THEOREM 6.1. For each extended acyclic causal modelM = (S,F, (��u)�u∈R(U)

)
which

respects the equations and its appropriate Shenoy shift Mmax
�U which is focused on ac-

tuality and subsequently respects the equations there is a counterfactual model M∗ =(S, (�w)w∈W
)

and its appropriate Shenoy shiftM∗max
�U such that:

SE Fi holds inM iff Fi holds inMmax
�U iff Fi holds inM∗ iff Fi holds inM∗max

�U

10 Shenoy conditionalizing just once on the conjunction �U = �u by max does not guarantee that the
resulting model is focused on actuality, because in that case all that matters is whether a world
differs from the actual world in the value for at least one or no exogenous variable.
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D For all �u ∈ R (U) and all w ∈W: ��u (w) = �w�u (w), where w�u is the unique solution
to all the equations ofM in �u.

C For all statements φ in the language of the generalized version of Halpern and
Hitchcock (2010) and all contexts �u ∈ R (U):
φ is true inM in �u according to the structural equations approach iff
φ is true inMmax

�U in �u according to the structural equations approach iff

φ is true inM∗max
�U in w�u according to the counterfactual models account.

Theorem 6.1 shows that we can do everything with objective ranking functions that we can
do with structural equations together with normality or typicality, and more. It does not
show that we can do everything. The reason I am belaboring the obvious is that it may well
be that someone comes up with examples which are modeled by isomorphic counterfactual
models, and of which it is claimed that the “intuitively correct” causal judgments differ
(see, however, Glymour et al., 2010).

In the same way, one may come up with examples which are modeled by extended
acyclic causal models in which, “intuitively”, respect for the equations does not hold. The
following one due to Christopher R. Hitchcock (personal correspondence) might be a case
in point. I think it is not, because counterfactuality trumps typicality in the sense that the
most typical A∧C-worlds are more typical than the most typical A∧¬C-worlds if A� C
is true.

Here is Hitchcock’s VICTIM example. Let exogenous variable A take on the value 1 if
Assassin shoots, and 0 otherwise. Let endogenous variable B take on the value 1 if Backup
shoots, and 0 otherwise. Let endogenous variable V take on the value 1 if Victim dies, and
0 otherwise. The functions FB : a �→ 1 − a and FV : (a, b) �→ max {a, b} describe the
following equations:

• A
• B = 1 − A
• V = A ∨ B

In every context, it is less typical for Assassin as well as Backup to shoot than not to shoot,
and for Victim to die than not to die.

The first equation implies that Backup would shoot if Assassin did not shoot. Respect for
the equations forces us to say that the world where Assassin does not shoot, Backup does
not shoot, and Victim does not die is less typical than the world where Assassin does not
shoot, Backup shoots, and Victim does not die. The reason is that the latter world strongly
Halpern-dominates the former world: the latter world violates the equation for V (an no
other equation), the former world violates the equation for B (and no other equation), and
B ∈ An (V ), but V � An (B). For a similar reason we have to say that the world where
Assassin does not shoot and Backup does not shoot and Victim dies is less typical than the
world where Assassin does not shoot, Backup shoots, and Victim dies.

Therefore, we must say that it is more typical that Assassin does not shoot and Backup
shoots than that Assassin does not shoot and Backup does not shoot. I think this is correct
because it conforms with the counterfactual that Backup would shoot if Assassin did not
shoot.

Another example is the PEN example mentioned in Halpern and Hitchcock (forthcom-
ing). Let endogenous variable P S take on the value 1 if Professor Smith takes a pen,
and 0 otherwise. Let endogenous variable C P take on the value 1 if the department chair
institutes a policy forbidding faculty members from taking pens, and 0 otherwise. Let
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exogenous variable P O take on the value 1 if a problem occurs, and 0 otherwise. The
function F : c �→ c describes the following equation:

• C P
• P S
• P O = P S

It is more typical for Professor Smith to not take a pen than to take a pen. In the context
where the department chair institutes a policy forbidding faculty members from taking
pens, C P = 1, and where Professor Smith takes a pen, P S = 1, it is true that Professor
Smith would (still) take a pen (even) if the department chair instituted a policy forbidding
faculty members from taking pens, C P = 1� P S = 1. So far so good.

Here is the important point. Halpern and Hitchcock (forthcoming) claim that it is more
“typical” that the department chair institutes a policy forbidding faculty members from tak-
ing pens and Professor Smith does not take a pen than that the department chair institutes a
policy forbidding faculty members from taking pens and Professor Smith takes a pen. The
reason is that Professor Smith violates a norm when he takes a pen in the context where
the department chair institutes a policy forbidding faculty members from taking pens.
This norm, or rather its violation, is claimed to have an impact on what is typical in that
context.

However, what Halpern and Hitchcock (forthcoming) call “typicality” involves a deon-
tic modality. The PEN example contains the conditional obligation that Professor Smith
should not take a pen given that the department chair institutes a policy forbidding faculty
members from taking pens, Ought (P S = 0 | C P = 1). And while I hold the view that
typicality or normality respects for the equations, I do not hold the view that deontic
modalities do. Quite the opposite is the case. Given that the department chair institutes
a policy forbidding faculty members from taking pens, Professor Smith should not, but
(still) would, take a pen. This, I submit, implies that is less typical that the department
chair institutes a policy forbidding faculty members from taking pens and Professor Smith
does not take a pen than that the department chair institutes a policy forbidding faculty
members from taking pens and Professor Smith takes a pen.

§7. Appendix

7.1. Proof of Theorem 1

THEOREM 7.1. For each extended acyclic causal modelM = (S,F, (��u)�u∈R(U)

)
which

respects the equations there is a counterfactual modelM∗ = (S, (�w)w∈W
)

such that:

SE Fi holds inM iff Fi holds inM∗

D For all �u ∈ R (U) and all w ∈W: ��u (w) = �w�u (w), where w�u is the unique solution
to all equations inM in �u.

Proof. Let M = (S,F, (��u)�u∈R(U)

)
be an extended acyclic causal model which

respects the equations. I will construct a counterfactual modelM∗ = (S, (�w)w∈W
)

with
the appropriate features. Take S fromM.

For each context �u ∈ R (U) the equations in F determine a unique “legal” world w�u ∈
W .W0 = {w�u ∈W : �u ∈ R (U)} is the set of all “legal” worlds, that is, the set of all worlds
that satisfy all equations. For w�u ∈ W0 we define �w�u (w) = ��u (w) for all w ∈ W . For
the “illegal” worlds w ∈ W \W0 which violate at least one equation we let the ranking
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functions �w copy an arbitrary ranking function �w�u , w�u ∈W0. The counterfactual model
M∗ constructed in this way satisfies D. It remains to be shown that it also satisfies SE.

Let Fi represent the equation for Vi , i = 1, . . . , n. Obviously Fi is eligible for Vi . We
have to show that Fi holds inM∗. This means we have to show for every world w ∈ W
that the following counterfactuals are all true inM∗ in w: �U ∪ V \ {Vi } = �wi � Vi =
Fi ( �wi ), where �wi ∈ Wi = ×X∈U∪V\{Vi } R (X). Since the �ws for the “illegal” worlds
w ∈ W \W0 copy some �w�u , for a “legal” world w�u ∈ W0, it suffices to show that this
holds for every “legal” world w�u ∈W0.

Each antecedent of the form �U ∪ V \ {Vi } = �wi , for �wi ∈ Wi , is true in the set of
worlds {( �wi , vi ) : vi ∈ R (Vi )}. There is exactly one v∗

i ∈ R (Vi ), viz. the value Fi assigns
to �wi , such that

( �wi , v
∗
i

)
does not violate the equation for Vi . For all other vi ∈ R (Vi )

the resulting world ( �wi , vi ) violates the equation for the endogenous variable Vi . Hence
Vi ∈ V∗ ( �wi , vi ) \ V∗ ( �wi , v

∗
i

)
for all vi � v∗

i . Furthermore,
( �wi , v

∗
i

)
and ( �wi , vi ) agree on

the values of all variables other than Vi .
Suppose X ∈ V∗ ( �wi , v

∗
i

) \ V∗ ( �wi , vi ) for an arbitrary vi � v∗
i . Since

( �wi , v
∗
i

)
and

( �wi , vi ) agree on the value of X , and since, by assumption, ( �wi , vi ) does not violate the
equation for X , there must be an exogenous or endogenous variable Y such that Y ∈
An (X) and

( �wi , v
∗
i

)
and ( �wi , vi ) do not agree on the value of Y . Since

( �wi , v
∗
i

)
and

( �wi , vi ) agree on the values of all variables other than Vi , this variable Y must be Vi .
That is, if X ∈ V∗ ( �wi , v

∗
i

) \ V∗ ( �wi , vi ), then Vi ∈ An (X). Since Vi ∈ V∗ ( �wi , vi ) \
V∗ ( �wi , v

∗
i

)
for all vi � v∗

i , this means that
( �wi , v

∗
i

)
weakly Halpern-dominates ( �wi , vi ).

Since, in acyclic causal models, X � An (Vi ) if Vi ∈ An (X), and since Vi ∈ V∗ ( �wi , vi ) \
V∗ ( �wi , v

∗
i

)
, ( �wi , vi ) does not weakly Halpern-dominate

( �wi , v
∗
i

)
.

Respect for the equations implies that ��u
(( �wi , v

∗
i

))
< ��u (( �wi , vi )) for all vi � v∗

i .
Since Vi = Fi ( �wi ) is true in

( �wi , v
∗
i

)
it follows that all ��u-minimal, that is, all �w�u -

minimal, antecedent worlds are consequent worlds. And this is so for all contexts �u ∈
R (U), that is, all “legal” worlds w�u ∈W0.

The if-direction follows from the fact that, for each endogenous variable Vi , at most
one eligible function holds in a given counterfactual model M∗. For two such functions
F and F ′ differ only if there is a �wi such that F ( �wi ) � F ′ ( �wi ). In that case the two
counterfactuals �U ∪ V \ {Vi } = �wi � Vi = F ( �wi ) and �U ∪ V \ {Vi } = �wi � Vi =
F ′ ( �wi ) have inconsistent consequents, and so cannot be jointly true at any world w. �

7.2. Proof of Theorem 2

THEOREM 7.2. For each extended acyclic causal modelM = (S,F, (��u)�u∈R(U)

)
which

is focused on actuality and subsequently respects the equations there is a counterfactual
modelM∗ = (S, (�w)w∈W

)
such that:

C For all statements φ in the language of the generalized version of Halpern and
Hitchcock (2010) and all contexts �u ∈ R (U):
φ is true inM in �u according to the structural equations approach iff φ is true inM∗
in w�u according to the counterfactual models account.

Proof. Let M = (S,F, (��u)�u∈R(U)

)
be an extended acyclic causal model which is

focused on actuality and subsequently respects the equations. ConstructM∗ as in the proof
of theorem 1.

Suppose φ is an atomic sentence of the form Xi = x for some exogenous or endogenous
variable Xi . If φ is true in M in context �u this means that x is the value of Xi in the
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unique solution w�u to all the equations in F . But then w�u ∈ {
(u1, . . . , um, v1, . . . , vn) =

(x1, . . . , xm+n) : xi = x
}
. Conversely, if φ is not true inM in context �u this means that

x is not the value of Xi in the unique solution w�u to all the equations in F , in which case
w�u � {(x1, . . . , xm+n) : xi = x}.

Now suppose φ is Boolean. Since negations and conjunctions are defined in the same
way in the structural equations approach and the counterfactual models account φ is true
inM in context �u iff φ is true inM∗ in “legal” world w�u .

Finally, suppose φ is of the form X1 = x1 ∧ . . . ∧ Xk = xk � ψ , for short: �X = �x �
ψ , where ψ is Boolean. Then φ is true in M in �u according to the structural equations

account just in case ψ is true in that modelM �X=�x =
(
S �X ,F �X=�x

)
and that context �u �X=�x

that result from M and �u by replacing the equations for Xi by the equations Xi = xi ,
i = 1, . . . , k. On the other hand, φ is true in M∗ in w�u just in case all �w�u -minimal
�X = �x-worlds are ψ-worlds.

It suffices to consider the case where ψ is an atomic sentence of the form Zi = z. In
this case ψ is true in the first sense just in case z is the value of Zi in the unique solution

w
�X=�x
�u �X=�x

=: w∗ to all equations represented by F �X=�x in context �u �X=�x .

We need to show that w∗ is the one and only �w�u -minimal �X = �x-world. w∗ is an
�X = �x-world and differs from any other �X = �x-world w′ at most in the values assigned
to U ∪ V \ {X1, . . . , Xk}. w∗ agrees with w�u in the values for the exogenous variables
U \ {X1, . . . , Xk}. Therefore, if an �X = �x-world w′ differs from w∗ in the value of some
exogenous variable U , w′ differs also from w�u in the value of U . This means that w∗
dominates any such world w′ in terms of focus on w�u . Focus on actuality implies that any
such world w′ has a higher rank in w�u and so is not among the ��u-minimal �X = �x-worlds.

This leaves only �X = �x-worlds which differ from w∗ in at most the values for the
endogenous variables V \{X1, . . . , Xk}. Let w′ be such a world and suppose X ∈ V∗ (w∗)\
V∗ (

w′). Since w∗ satisfies the equations for all endogenous variables V \ {X1, . . . , Xk},
it must be that X ∈ {X1, . . . , Xk}. Since w′ and w∗ agree on the values of X1, . . . , Xk ,
and since, by assumption, w′ satisfies the equation for X , there must be an exogenous or
endogenous variable Y such that Y ∈ An (X) and w′ and w∗ differ in the value for Y . The
latter implies that Y is endogenous, but not not among X1, . . . , Xk , and therefore w∗ does
not violate the equation for Y . If w′ violates the equation for Y , we are done. So suppose
w′ does not violate the equation for Y .

w∗ and w′ agree on the values of U as well as X1, . . . , Xk , w∗ satisfies the equations for
V \{X1, . . . , Xk}, and Y ∈ V \{X1, . . . , Xk}. Hence, if w′ satisfies the equation for Y , there
must be an exogenous or endogenous variable Z such that Z ∈ An (Y ) ⊆ An (X) and w′
and w∗ differ in the value of Z . As before it follows that Z is endogenous, but not among
X1, . . . , Xk , and that w∗ satisfies the equation for Z . If w′ violates the equation for Z , we
are done. If not, there must be another endogenous variable Z ′ ∈ An (Z) ⊆ An (Y ) ⊆
An (X) with the same properties. Since there are only finitely many variables, and since
the model is acyclic, we finally arrive at an endogenous variable Z∗ ∈ An (X) such that w′
violates the equation for Z∗, but w∗ does not. Hence w∗ weakly Halpern-dominates w′.

Note that V∗ (
w′) \ V∗ (w∗) is not empty, if w′ differs from w∗. For suppose it is. Then

all variables whose equation are violated by w′ are also violated by w∗. Since w∗ does not
violate the equations for V \{X1, . . . , Xk}, and since w′ and w∗ agree on the values of U as
well as X1, . . . , Xk , w′ and w∗ agree on the values for all variables, and thus are identical.

Since, in acyclic models, X � An (Z∗) if Z∗ ∈ An (X), and since Z∗ ∈ V∗ (
w′) \

V∗ (w∗) for at least one endogenous variable Z∗, w′ does not weakly Halpern-dominate



STRUCTURAL EQUATIONS AND BEYOND 731

w∗. Focus on actuality and subsequent respect for the equations implies that any such world
w′ has a higher rank in w�u and so is not among the ��u-minimal �X = �x-worlds. �
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