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What Is the Point of Confirmation?

Franz Huber†‡

Philosophically, one of the most important questions in the enterprise termed confir-
mation theory is this: Why should one stick to well confirmed theories rather than to
any other theories? This paper discusses the answers to this question one gets from
absolute and incremental Bayesian confirmation theory. According to absolute confir-
mation, one should accept “absolutely well confirmed” theories, because absolute con-
firmation takes one to true theories. An examination of two popular measures of
incremental confirmation suggests the view that one should stick to incrementally well
confirmed theories, because incremental confirmation takes one to (the most) infor-
mative (among all) true theories. However, incremental confirmation does not further
this goal in general. I close by presenting a necessary and sufficient condition for
revealing the confirmational structure in almost every world when presented separating
data.

1. Introduction. Philosophically, one of the most important questions in
the enterprise traditionally termed confirmation theory is this: Why should
one stick to well confirmed theories rather than to any other theories? In
other and more mundane words: What is the point of confirmation? In
what follows I will examine whether and how absolute and incremental
Bayesian confirmation theory answer this question.

According to absolute Bayesian confirmation theory, an agent’s degree
of absolute confirmation of some hypothesis or theory H by a piece of
evidence E relative to a body of background information B equals the
probability of H given E and B, , where is thePr (HFE ∧ B) Pr : L r �
agent’s actual degree of belief function on some language (see SectionL
2). According to incremental Bayesian confirmation theory, an agent’s
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degree of incremental confirmation of H by E relative to B is measured by
a relevance measure rPr based on the agent’s actual degree of belief function
Pr; i.e., a possibly partial function such that for allr : L # L # L r �Pr

H, E, B � L with :Pr (E ∧ B) 1 0

r (H, E, B) � 0 ⇔ Pr (HFE ∧ B) � Pr (HFB).Pr

2. The Point of Absolute Confirmation. The traditional answer to our
question is something like this: Science aims at true theories, and one
should accept well confirmed theories, because confirmation takes one to
true theories. Indeed, if arriving at true theories is our (only) goal, then
there is a point to absolute confirmation. In the long run, absolute con-
firmation almost surely takes one to true theories. This is the content of
the following theorem (Gaifman and Snir 1982, 507):

Theorem 1 (Gaifman and Snir). Let sep-S p {A � L : i p 0, 1, . . .}i

arate ModL, let be if and otherwise, and letqA A q X A ¬Ai i i i

be 1 if and 0 otherwise. Then for every ,[B](q) q X B B � L
qPr BF # A r [B](q) almost everywhere as n r �.i( )

!0≤i n

Here is the relevant technical background. L is obtained from a first-order
language for arithmetic, , by adding finitely many “empirical” predi-L0

cates and function symbols (whose interpretation is not fixed). containsL0

all numerals ‘1’, . . . as individual constants; countably many individual
variables ‘ ’, . . . taking values in the set of natural numbers N; thex1

common symbols ‘�’, ‘7’, and ‘p’ for addition, multiplication, and iden-
tity, respectively; and the standard quantifiers and connectives. In addi-
tion, there may be finitely many predicates and function symbols denoting
certain fixed relations over N. The set of well formed formulas of L is
denoted by ‘ ’ and is also called a language.L

A model for L consists of an interpretation J of the empirical symbols
which assigns every k-ary predicate ‘P’ a subset , and everykJ(‘P’) P N
k-ary function symbol ‘f ’ a function from to N. The interpre-kJ(‘f’) N
tation of the symbols in is the standard one and is kept the same inL0

all models. ModL is the set of all models for L. ‘ ’ says that formulaq X A
A is true in model . is valid, ,q � Mod A[x , . . . , x ] X A[x , . . . , x ]L 1 k 1 k

iff for all and all .q X A[n /x , . . . , n /x ] q � Mod n , . . . , n � N1 1 k k L 1 k

Here, ‘ ’ results from ‘ ’ by uniformouslyA[n /x , . . . , n /x ] A[x , . . . , x ]1 1 k k 1 k

substituting ‘ ’ for ‘ ’ in ‘A’, . ‘ ’ indicates thatn x 1 ≤ i ≤ k A[x , . . . , x ]i i 1 k

‘ ’, . . ., ‘ ’ are the only variables occurring free in ‘A’.x x1 k

A function is a probability on iff for all A, :Pr : L r � L B � L≥0
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1. X A ↔ B ⇒ Pr (A) p Pr (B)
2. X A ⇒ Pr (A) p 1
3. X ¬(A ∧ B) ⇒ Pr (A ∨ B) p Pr (A) � Pr (B)
4. . . .Pr (axA[x]) p sup {Pr (A[n /x] ∨ ∨ A[n /x]) : n , . . . , n , k � N}1 k 1 k

The conditional probability of A given B, , is defined asPr (AFB)

5. Pr (AFB) p Pr (A ∧ B)/ Pr (B)

provided . Pr is regular iff the converse of 2. holds as well,Pr (B) 1 0

6. .Pr (A) p 1 ⇒ X A

A set of sentences separates a set of models iff for anyS P L X P ModL

two distinct q1, there exists such that andq � X A � S q X A2 1

. The set of all atomic empirical sentences separates ModL (Gaif-q X/ A2

man and Snir 1982, 507).1

However, absolute confirmation has long been abandoned in favor of
incremental confirmation. Is there another goal for incremental confir-
mation that is different from arriving at true theories? If so, what is this
goal?

3. What Is the Point of Incremental Confirmation? Two popular measures
of incremental confirmation are the distance measure d (Earman 1992)
and the Joyce-Christensen measure s (Joyce 1999; Christensen 1999):

d (H, E, B) p Pr (HFE ∧ B) � Pr (HFB),Pr

s (H, E, B) p Pr (HFE ∧ B) � Pr (HF¬E ∧ B).Pr

What do these measures measure? The measure d increases with

• the plausibility of H given E and B, , andp p Pr (HFE ∧ B)
• the evidence neglecting or data independent semantic informativeness

of H relative to B, .i p Pr (¬HFB)0

Similarly, s increases with

• the plausibility of H given E and B, , andp p Pr (HFE ∧ B)

1. The Gaifman and Snir framework is not rich enough for proper theory assessment.
The reason is that the “theories” whose truth values one converges to by conditioning
on appropriate data sentences are formulated within the same “empirical” vocabulary
as are the data sentences. So there is no room for theoretical terms in the sense that
the probability of a theory whose formulation contains theoretical terms not occurring
in any data sentence does not necessarily converge to its truth value when one keeps
conditionalizing on these data sentences. As an aside, note that this problem disappears
if the realist goal of truth is replaced by the empiricist goal of empirical adequacy.
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• the evidence based or data dependent semantic informativeness of
H relative to E and B, i.e., the amount to which H informs about E
relative to B, .i p Pr (¬HF¬E ∧ B)1

This is clearly seen by rewriting d and s as follows:

d (H, E, B) p Pr (HFE ∧ B) � Pr (¬HFB) � 1,Pr

s (H, E, B) p Pr (HFE ∧ B) � Pr (¬HF¬E ∧ B) � 1.Pr

The quantities p and as well as p and are conflicting in the sense thati i0 1

p decreases, whereas and increase with the logical strength of thei i0 1

hypothesis to be assessed. So d and s weigh between two conflicting as-
pects, viz. the plausibility and the informativeness of the hypothesis to
be assessed.

In Section 4 I will argue in more detail that and measure twoi i0 1

different, but equally sensible kinds of informativeness. Section 5 provides
another argument that: (i) d and s do nothing but weigh between the two
conflicting goals of plausibility and informativeness; (ii) that they are
exactly alike in the way they weigh between these two aspects; and (iii)
that they differ from each other just in the respect that d is based on data
independent informativeness whereas s is based on informativeness about
the data. All this suggests the following answer to our question: Science
aims at informative true theories, and one should stick to incrementally
well confirmed theories, because incremental confirmation takes one to
(the most) informative (among all) true theories. However, as shown in
Section 6, incremental confirmation does not further this goal in general.
I close by giving a necessary and sufficient condition for revealing the
confirmational structure in almost every world when presented separating
data.

4. Measuring Semantic Information. In a subjective Bayesian framework
it is clear that measures the plausibility of H in view ofp p Pr (HFE ∧ B)
E and B. It is still rather obvious that measures the datai p Pr (¬HFB)0

independent informativeness of H relative to B. was already consideredi0

by Carnap and Bar-Hillel (1952), Bar-Hillel and Carnap (1953), Hempel
(1960, 1962), and Hintikka and Pietarinen (1966) (for the notion of se-
mantic information cf. Bar-Hillel 1952, 1955). The second measure that
was discussed in this connection is

1
i p � log Pr (HFB) p log .2 2 2 Pr (HFB)

is ordinally equivalent to . For future reference it is convenient toi i2 0
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Figure 1.

define the analogous

p p log Pr (HFE ∧ B),2 2

which is ordinally equivalent to .p p p0

It is less obvious that measures how much H in-i p Pr (¬HF¬E ∧ B)1

forms about the data E relative to background B (cf., however, Hilpinen
1970). Following the above mentioned literature, one would expect some-
thing like:2

i p Pr (¬HFE ∧ B),3

i p Pr (E) 7 Pr (¬HFE ∧ B),4

1
i p log p � log Pr (HFE ∧ B).5 2 2Pr (HFE ∧ B)

As is often the case, a picture is worth a 1,000 words—see Figure 1.
The background information B determines the set of possibilities and

is nothing but a restriction on the set of possible worlds over which inquiry
has to succeed. H is the hypothesis whose informativeness about the data
E is to be assessed (relative to B). Suppose you are asked to strengthen
H by deleting possibilities verifying it, that is, by shrinking the area rep-
resenting H. Would you not delete possibilities outside E? After all, given
E, those are exactly the possibilities known not to be the actual one,
whereas those possibilities inside E are still alive options. Indeed, in-i1

creases when H shrinks to as depicted in Figure 2, because it measures′H
how much of is occupied by . As a consequence, the information¬E ¬H

2. In Levi (1967), is proposed as, roughly, a measure for the relief from agnosticismi3

afforded by accepting H as strongest relative to total evidence . For and theE ∧ B i i4 5

reader is referred to Hintikka and Pietarinen (1966).
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Figure 2.

H provides about E is maximal if H logically implies E (in this case H is
completely within E, and so covers all of ). So according to , two¬H ¬E i1

hypotheses both logically implying all of the data—say, a complete theory
about the world, and a theory-like collection of the data—carry the same
maximal amount of information about E. In a sense, this is odd, because
one would like the complete theory to come out as more informative than
the theory-like collection of the data. This is what yields. For it doesi i0 0

not matter which possibilities one deletes in strengthening H (provided
all possibilities have equal weight on the probability measure Pr). ne-i0

glects whether they are inside or outside E. The other candidates for
measuring semantic information do rather poorly on this count: they
require the deletion of the possibilities inside E. (Another reason why ,i3

, and seem to be inappropriate in the present context is presented ini i4 5

the next section.)
The background information B plays a role different from that of the

evidence E for and , but not for , , or . Clearly, there is a differencei i i i i0 1 3 4 5

between data on the one hand and background assumptions on the other;
and this difference should show up somewhere. Apart from the above
mentioned point that B determines the set of possibilities over which
inquiry has to succeed, whereas E is gathered in order to indicate which
of these possibilities is the actual one, there is the following difference:
Hypotheses are supposed to inform about the world, and hence about
the data, but they are usually not supposed to inform about the back-
ground assumptions. (If one holds there should be no difference between
E and B as far as measuring information is concerned, then one can
nevertheless adopt the above measures by substituting and′E p E ∧ B

for E and B, respectively.)′B p l
In order to avoid that one has to take sides between and let usi i0 1

call a possibly partial function a strengthi p f : L # L # L r [0, 1]i ,i0 1
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indicator (based on and ) iff f is non-decreasing in both and increasingi i0 1

in at least one of its arguments and , for , andi i f p 1 i p i p 10 1 i ,i 0 10 1

for .f p 0 i p i p 0i ,i 0 10 1

5. Expected Informativeness as One Way of Weighing. Having tried to
make plausible that and measure informativeness per se and inform-i i0 1

ativeness about the data, respectively, let us now turn back to the distance
measure d and the Joyce-Christensen measure s. The two conflicting goals
of informativeness and plausibility are equally important for d and s—
and they are all what matters for them. Hence, other things being equal—
these other things being the probabilities (plausibility values) of the hy-
potheses given the data E and the background information B—the overall
d- or s-value of hypothesis H relative to E and B is the greater, the higher
the informativeness of H (in the respective sense).

Clearly, if one knows the truth values of the theories one is assessing,
then the plausibility of a theory’s being true is of no interest anymore.
In this case all what matters is how informative the theories are. Yet in
general we do not know these truth values. Hence we consider how plau-
sible it is that they are true in the world we are in, and how informative
they are (about this world). Then we form their overall value by combining
these two parameters in some suitable way. One such way immediately
suggests itself: assign H as its overall value its expected informativeness.

E(i ) p Pr (¬HFB) 7 Pr (HFE ∧ B)0

� Pr (¬¬HFB) 7 Pr (¬HFE ∧ B),

E(i ) p Pr (¬HF¬E ∧ B) 7 Pr (HFE ∧ B)1

� Pr (¬¬HF¬E ∧ B) 7 Pr (¬HFE ∧ B).

A little bit of reformulation shows that

E(i ) p d (H, E, B) and E(i ) p s (H, E, B).0 Pr 1 Pr

So once again, d and s are exactly alike in the way they combine or weigh
between informativeness and plausibility—which is to form the expected
informativeness (cf. Hintikka and Pietarinen 1966 and Levi 1961, 1963,
but also Hempel 1960). Their sole difference lies in the way they measure
informativeness. In this sense, part of the discussion about the right mea-
sure of incremental confirmation is a discussion about the right measure
of semantic information.
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The measures , , and do again poorly:i i i3 4 5

E(i ) p E(i ) p 0,3 4

E(i ) � 0 ⇔ Pr (HFE ∧ B) � Pr (¬HFE ∧ B).5

Hence only gives a non-trivial answer, viz. to maximize probability. Buti5

then we can simply stick to probabilities and need not employ .i5

6. Revealing the Confirmational Structure. The preceding suggests the fol-
lowing answer to the question what goal incremental confirmation is sup-
posed to further: Science aims at informative truth, and one should stick
to incrementally well confirmed theories, because incremental confirma-
tion takes one to (the most) informative (among all) true theories. The
question is, of course, whether and in what sense this holds true.

When is one theory at least as informative as another? Well, if the first
theory logically implies the second one, then the first theory is at least as
informative as the second one. When else? In general, there is no further
condition that applies equally to all probability measures Pr. Just as the
only Pr-independent condition for to be at least as probable as isH H1 2

that logically implies , so the above is the only Pr-independentH H2 1

condition for to be at least as informative as .H H1 2

Hence, given a possible world , is to be preferred overq � Mod(B) H1

in q if is true in q, but is false in q; or if and have theH H H H H2 1 2 1 2

same truth value in q, and logically implies but does not logicallyH H H1 2 2

imply . If H is logically true, then H is preferred in q over anyH H1 2

which is false in q. On the other hand, any contingent that is true inH1

q is preferred over H, because these ’s are not only true in q; they areH1

also more informative than H. Similarly, if H is logically false, then H is
worse in q than any theory that is true in q, but better than any theory
that is false in q (because they are all less informative than H).

In this way each q induces a partial order among the set of all (equiv-
alence classes of axiomatizations of) theories: On the positive side one
has all theories that are contingently true in q, and on the negative side
there are all theories that are contingently false in q. In between there
are the logically determined theories. Among the true theories on the
positive side, the most informative, i.e., the complete theory about q, is
on top, followed by all true hypotheses it logically implies, partially or-
dered according to the logical consequence relation. This order goes all
the way down to the least informative among all true theories, the tau-
tology, which is placed at the bottom of the positive side. On that same
level is the most informative among all false theories, the contradiction,
followed by all contingently false theories, again partially ordered ac-
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cording to the logical consequence relation. Let us call this partial order
the confirmational structure of q.

For a given q, we would like a function f to stabilize to the correct
answer in the sense that f gets the confirmational structure of q right after
finitely many steps (data sentences from q), and continues to do so forever
without necessarily halting (or giving any other sign that it has arrived
at the true answer)—cf. Kelly (1996). In general, stabilisation to the correct
answer is a stronger requirement than convergence to the correct answer.
However, the Gaifman and Snir convergence theorem actually gives rise
to a measure 1 stabilisation result (assign 1 to H if its probability exceeds
.5, and 0 otherwise).

Let be a sequence of sentences all of which are true ine , . . . , e , . . .0 n

. A possibly partial function reveals theq � Mod(B) f : L # L # L r �
confirmational structure of q when presented iff for any contingent(e )i i�N

H1, , and any :H � L H � L2

1. , :q X H q X/ H ⇒ anGm ≥ n f(H , E , B) 1 0 1 f(H , E , B)1 2 1 m 2 m

2. , , :q X H q X H H X H X H ⇒ anGm ≥ n f(H , E , B) 11 2 1 2 1 1 m

f(H , E , B) 1 02 m

3. , , :q X/ H q X/ H H X H X/ H ⇒ anGm ≥ n 0 1 f(H , E , B) 11 2 1 2 1 1 m

f(H , E , B)2 m

4. or ,X H X ¬H ⇒ Gm : f(H, E , B) p 0m

where . An immediate consequence of the Gaifman and SnirE p # e!m 0≤i m i

convergence theorem is

Observation 1. For any regular Pr on and anyL {e � L : i � N}i

separating ModL there is with such that forX P Mod Pr* (X ) p 1L

all (and hence for all , for any ): ,q � X q � X ∩ Mod(B) B � L dPr

, and it reveal the confirmational structure of q when presenteds cPr Pr

.q(e )i i�N

Pr* is the unique probability measure on the smallest j-field containingA
the field such that for all{Mod(A) : A � L} Pr (A) p Pr* (Mod(A))

. c is the Carnap measure (Carnap 1962),A � L

c (H, E, B) p Pr (H ∧ E ∧ B) 7 Pr (B) � Pr (H ∧ B) 7 Pr (E ∧ B)Pr

p ( p � i � 1) 7 Pr (B) 7 Pr (E ∧ B).0

However, observation 1 does not extend to all relevance measures. The
log-ratio measure r (Milne 1996) and the log-likelihood ratio measure l
(Fitelson 1999, 2001) do not reveal the confirmational structure of almost
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every when presented separating data:q � ModL

Pr (HFE ∧ B)
r (H, E, B) p log ,Pr [ ]Pr (HFB)

Pr (EFH ∧ B)
l (H, E, B) p logPr [ ]Pr (EF¬H ∧ B)

Pr (HFE ∧ B) 7 Pr (¬HFB)
p log .[ ]Pr (¬HFE ∧ B) 7 Pr (HFB)

Like all relevance measures, r and l separate contingently true from con-
tingently false theories. More precisely, for any regular Pr on , anyL

separating ModL, any , any (for{e � L : i � N} B � L q � X ∩ Mod(B)i

some with ), and any two contingent H1,X P Mod Pr* (X ) p 1 H �L 2

such that and there exists n such that for all ,L q X H q X/ H m ≥ n1 2

q qr (H , E , B) 1 0 1 r (H , E , B), r p r, l.Pr 1 m Pr 2 m

Furthermore, r and l also weigh between plausibility and informativeness:

r (H, E, B) p log Pr (HFE ∧ B) � log Pr (HFB)Pr

p p � i ,2 2

l (H, E, B) p log Pr (HFE ∧ B) � log Pr (HFB)Pr

� (log Pr (¬HFE ∧ B) � log Pr (¬HFB))

p p (H ) � i (H ) � ( p (¬H ) � i (¬H )).2 2 2 2

However, although r does distinguish between informative and uninforma-
tive true theories (in the sense of revealing part 2 of the confirmational
structure of almost every world), it does not distinguish between infor-
mative and uninformative false theories. l performs even worse on this
count, because it neither distinguishes between informative and unin-
formative true theories nor between informative and uninformative false
theories. The reason is fairly obvious: If , then ,p p 0 p p log p p ��2

whence for any finite value of . This means in particularp � i p �� i2 2 2

that informativeness does not matter anymore once a theory is falsified
by the data. Similarly in case of r.

Which conditions are sufficient for a function to reveal the confirma-
tional structure of almost every world when presented separating data?
Let be a function of, among others, and somef p f(i, p) p p Pr (HFE ∧ B)
strength indicator based on andi p f i p Pr (¬HFB) i p Pr (¬HFi ,i 0 10 1

. It is clearly necessary that ; for and¬E ∧ B) f(1, 0) p f(0, 1) p 0 p p 0
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, if H is logically false; and and if H is logically true—i p 1 p p 1 i p 0
and in these cases H must be sent to 0, independently of what the data
are.

1. Demarcation: .f(1, 0) p f(0, 1) p 0

In conjunction with Demarcation, which is violated by r and l,3 the fol-
lowing is sufficient:

2. Continuity: Any surplus in informativeness succeeds, if the differ-
ence in plausibility is small enough.

3. G s1, s2, t1, :G� 1 0 ad 1 0 t � [0, 1] s 1 s � � & t 1 t � d ⇒� 2 1 2 1 2 �

.f(s , t ) 1 f(s , t )1 1 2 2

(The are possible values of i, and the are possible values of p.) Indeed,s ti i

it suffices that Demarcation be conjoined with

3. Continuity in Certainty: Any surplus in informativeness succeeds,
if plausibility becomes certainty.

4. , : , ,1′ ′ ′ ′G� 1 0 G(t ) (t ) (t , t � [0, 1]) t t ri { anGm ≥ nGs s �i i�N i i�N i i i i m m0
: .′ ′ ′[0, 1] s 1 s � � ⇒ f(s , t ) 1 f(s , t )m m m m m m

Theorem 2. Let Pr be a regular probability on , letL {e : i � N} Pi

separate ModL, let f be a function of, among others, i and pL
satisfying Continuity in Certainty and Demarcation, and let Pr* be
the unique probability measure on the smallest j-field containingA
the field such that for all :{Mod(A) : A � L} A � L Pr (A) p

, where . Then therePr* (Mod(A)) Mod(A) p {q � Mod : q X A}L

exists with such that the following holds for everyX � A Pr* (X ) p 1
, any two contingent H1, , and every :q � X H � L H � L2

1. , q qq X H q X/ H ⇒ anGm ≥ n : f(H , E ) 1 0 1 f(H , E )1 2 1 m 2 m

2. , q qq X H H X H X H ⇒ anGm ≥ n : f(H , E ) 1 f(H , E ) 11 1 2 1 1 m 2 m

0
3. , q qq X/ H H X H X/ H ⇒ anGm ≥ n : 0 1 f(H , E ) 1 f(H , E )2 1 2 1 1 m 2 m

4. or .qX H X ¬H ⇒ Gm : f(H, E ) p 0m

3. This defect can be repaired by sticking to the ordinally equivalent and , re-r* l*
spectively:

Pr (HFE ∧ B) � 1/n
r*(H, E, B) p lim log ,[ ]Pr (HFB) � 1/nnr�

Pr (HFE ∧ B) 7 Pr (¬HFB) � 1/n
l*(H, E, B) p lim log .[ ]Pr (¬HFE ∧ B) 7 Pr (HFB) � 1/nnr�
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However, even Continuity in Certainty is not necessary. The necessary
and sufficient condition for revealing the confirmational structure in al-
most every world when presented separating data is this:

Definition 1. A possibly partial function is a Gaif-f : L # L # L r �
man and Snir assessment function iff for every probability Pr on a
Gaifman and Snir language (as described in Section 2) and everyL

separating ModL there is with{e : i � N} P L X � A Pr* (X ) p 1i

such that for all and all :q � X m � N

I. , 1q qH X H X/ H Pr (H FE ) rm { ⇒ anGm ≥ n : f(H , E ) 11 2 1 1 m 1 m0qf(H , E )2 m

II. , , .q q qX H X ¬H Pr (E ) 1 0 ⇒ f(H , E ) p f(H , E ) p 01 2 m 1 m 2 m

Condition I, and hence Continuity in Certainty, is violated by r and l.
(This defect cannot be repaired by sticking to or .)r* l*

Definition 2. Let Pr be a probability on a Gaifman and Snir language
and let separate ModL. A possibly partial functionL {e : i � N} P Li

reveals the confirmational structure of Pr*-al-f : L # L # L r �
most every world when presented separating iffq � Mod (e )L i i�N

there is with such that for all , all contin-X � A Pr* (X ) p 1 q � X
gent H1, , and all :H � L H � L2

1. , .q qq X H q X/ H ⇒ anGm ≥ n : f(H , E ) 1 0 1 f(H , E )1 2 1 m 2 m

2. , q qq X H H X H X/ H ⇒ anGm ≥ n : f(H , E ) 1 f(H , E ) 11 1 2 1 1 m 2 m

.0
3. , .q qq X/ H H X H X/ H ⇒ anGm ≥ n : 0 1 f(H , E ) 1 f(H , E )2 1 2 1 1 m 2 m

4. or .qX H X ¬H ⇒ Gm : f(H, E ) p 0m

f reveals the confirmational structure of almost every world when
presented separating data iff for any probability Pr on a Gaifman
and Snir language and any separating ModL: fL {e : i � N} P Li

reveals the true assessment structure of Pr*-almost every world
when presented separating .q � Mod (e )L i i�N

Theorem 3. A possibly partial function revealsf : L # L # L r �
the confirmational structure of almost every world when presented
separating data iff f is a Gaifman and Snir assessment function.

One reason why I nevertheless stick to the more general Continuity
conditions is that it depends on the underlying convergence theorem which
conditions are necessary and sufficient for revealing the true assessment
structure in so and so many world when presented such and such data.
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More importantly, in the context of theory assessment (Huber, forthcom-
ing) the idea behind the use of these limit considerations is that they
provide a theoretical justification for adopting the proposed conditions
in the here and now. When assessing several alternative theories we cannot
wait until we have arrived at the point of stabilisation for these theories
(in fact, we won’t know in general when we have passed that point). We
need to make our evaluations here and now, where the informativeness
and plausibility values are somewhere in between their maximal and min-
imal values, and we have no idea in which direction they will eventually
converge. A theory of theory assessment needs to answer the question
what to do when facing such a situation. Continuity does give an answer,
but Continuity in Certainty does not. However, we also need to justify
this answer—and we do so by appealing to the fact that when we satisfy
Continuity in the special case when the plausibility values converge, we
almost surely reveal the true assessment structure; and in order to always
almost surely reveal the true assessment structure, we always have to be
prepared for that convergence to happen, and so we should always satisfy
Continuity.

7. Conclusion. I started from the question: Why should one stick to well
confirmed theories rather than to any other theories? The answer we got
from absolute Bayesian confirmation theory is that one should stick to
absolutely well confirmed theories, because absolute confirmation almost
surely takes one to true theories. I continued by looking for an answer
from incremental Bayesian confirmation theory. This answer should be
different from the previous one in order for incremental confirmation to
improve on absolute confirmation.

It turned out that three popular measures of incremental confirmation,
viz. the distance measure d, the Joyce-Christensen measure s, and the
Carnap measure c, give an interesting answer: One should stick to incre-
mentally well confirmed theories, because incremental confirmation al-
most surely takes one to (the most) informative (among all) true theories.

However, although all measures of incremental confirmation separate
contingently true from contingently false theories, not all of them distin-
guish between informative and uninformative true and false theories. The
log-ratio measure r does not distinguish between informative and unin-
formative false theories, and log-likelihood ratio measure l neither dis-
tinguishes between informative and uninformative true nor between in-
formative and uninformative false theories. A sufficient condition for
revealing the confirmational structure of almost every world when pre-
sented separating data is the conjunction of Continuity and Demarcation,
the core principle of the plausibility-informativeness theory of theory as-
sessment (Huber, forthcoming).
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