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Abstract The problem addressed in this paper is “the main epistemic problem
concerning science”, viz. “the explication of how we compare and evaluate theo-
ries [. . .] in the light of the available evidence” (van Fraassen, BC, 1983, Theory
comparison and relevant Evidence. In J. Earman (Ed.), Testing scientific theories
(pp. 27–42). Minneapolis: University of Minnesota Press). Sections 1–3 contain the
general plausibility-informativeness theory of theory assessment. In a nutshell, the
message is (1) that there are two values a theory should exhibit: truth and infor-
mativeness—measured respectively by a truth indicator and a strength indicator; (2)
that these two values are conflicting in the sense that the former is a decreasing and
the latter an increasing function of the logical strength of the theory to be assessed;
and (3) that in assessing a given theory by the available data one should weigh be-
tween these two conflicting aspects in such a way that any surplus in informativeness
succeeds, if the shortfall in plausibility is small enough. Particular accounts of this
general theory arise by inserting particular strength indicators and truth indicators.
In Section 4 the theory is spelt out for the Bayesian paradigm of subjective proba-
bilities. It is then compared to incremental Bayesian confirmation theory. Section 4
closes by asking whether it is likely to be lovely. Section 5 discusses a few problems
of confirmation theory in the light of the present approach. In particular, it is briefly
indicated how the present account gives rise to a new analysis of Hempel’s conditions
of adequacy for any relation of confirmation (Hempel, CG, 1945, Studies in the logic
of comfirmation. Mind, 54, 1–26, 97–121.), differing from the one Carnap gave in §87
of his Logical foundations of probability (1962, Chicago: University of Chicago Press).
Section 6 adresses the question of justification any theory of theory assessment has to
face: why should one stick to theories given high assessment values rather than to any
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other theories? The answer given by the Bayesian version of the account presented
in section 4 is that one should accept theories given high assessment values, because,
in the medium run, theory assessment almost surely takes one to the most informa-
tive among all true theories when presented separating data. The concluding section
7 continues the comparison between the present account and incremental Bayesian
confirmation theory.

Keywords Theory evaluation · Confirmation · Probability

1 The problem

The problem adressed in this paper is this:

the main epistemic problem concerning science [. . .] is the explication of how
we compare and evaluate theories [. . .] in the light of the available evidence[.]
(van Fraassen, 1983, p. 27)

In other words the question is: what is a good theory, and when is one theory better
than another, given these data and those background assumptions. Let us call this
the problem of a theory of theory assessment. Its quantitative version can be put as
follows.

• We are given a hypothesis or theory H, a set of data—the evidence—E, and some
background information B.

• The question is: how “good” is H given E and B? That is, what is the “value” of
H in view of E and B?

• An answer to this question consists in the definition of a (set A of) function(s) a
such that (for each a ∈ A:) a (H, E, B) measures the value of H in view of E and
B, i.e. how good H is given E and B.

Given this formulation of our problem, a theory of theory assessment need not account
for the way in which scientists arrive at their theories nor how they (are to) gather
evidence nor what they may assume as background information. Furthermore, one
purpose of this evaluation is that we accept those theories (among the ones we can or
have to choose from) which score highest in the assessment relative to the available
data (as discussed in more detail below, the term ‘accept’ is not used in the sense of
‘believe’ or ‘hold to be true’). This indicates that a proper treatment of the whole
problem not only explicates how we evaluate theories in the light of the available
evidence (sections 2–5). A proper treatment also justifies this evaluation by answering
the question why we should accept those theories that score highest (sections 6 and 7).

In order for the above characterization to be precise one has to make clear what is
meant by theory, evidence, and background information. In what follows it is assumed
that for every hypothesis H, every piece of evidence E, and every body of background
information B there exist finite axiomatizations (in a first-order language including
identity and function symbols) AH , AE, and AB, respectively, which formulate H, E,
and B, respectively. As theory assessment turns out to be closed under equivalence
transformations, H, E, and B can and will be identified with one of their formulations
AH , AE, and AB, respectively.
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2 Conflicting concepts of confirmation

Although some take theory assessment to be the main epistemic problem concerning
science, there is no established branch addressing exactly this problem. What comes
closest is what is usually called confirmation theory. So let us briefly look at confirma-
tion theory, and see what insights we can get from there concerning our problem.

Confirmation has been a hot topic in the philosophy of science for more than
60 years now, starting with such classics as Carl Gustav Hempel’s “Studies in the
Logic of Confirmation” (1945)1 and Rudolf Carnap’s work on inductive logic and
probability (Carnap, 1952, 1962). The first decades have been dominated by the fol-
lowing two approaches.

• The qualitative theory of Hypothetico-Deductivism HD (sometimes associated
with Karl R. Popper) says that hypothesis H is confirmed by evidence E relative
to background information B iff the conjunction of H and B logically implies E
in some suitable way—the latter depending on the version of HD under consid-
eration.

• The quantitative theory of probabilistic Inductive Logic IL (associated with Rudolf
Carnap) says that H is confirmed by E relative to B to degree r iff the probability
of H given E and B is greater than or equal to r. The corresponding qualitative
notion of confirmation is that E “absolutely” IL-confirms H relative to B iff the
probability of H given E and B is greater than some fixed value r ∈ [

.5, 1).2

So there are at least two concepts of confirmation. There is a concept of confirmation
that aims at informative theories, and there is a concept of confirmation that aims at
plausible or true theories. These two concepts of confirmation are conflicting in the
sense that the former is an increasing and the latter a decreasing function of the logical
strength of the theory to be assessed.

Let us turn this into a definition.

Definition 1 A relation |∼ ⊆ L × L on a language (set of propositional or first-order
sentences closed under negation and conjunction) L is an informativeness relation
iff for all E, H, H′ ∈ L:

E |∼ H, H′ � H ⇒ E |∼ H′.

|∼ ⊆ L × L is a plausibility relation on L iff for all E, H, H′ ∈ L:

E |∼ H, H � H′ ⇒ E |∼ H′,

where � ⊆ ℘ (L) × L is the classical deducibility relation (and singletons of formulae
are identified with the formula they contain).

The idea is that a sentence or proposition is the more informative, the more possibil-
ities it excludes. Hence, the logically stronger a sentence, the more informative it is.

1 Cf. also Hempel (1943) and Hempel and Oppenheim (1945).
2 This is not the way Carnap defines qualitative IL-confirmation in chapter VII of his (1962). There
he requires that the probability of H given E and B be greater than that of H given B in order
for E to qualitatively IL-confirm H relative to B. Nevertheless, the above is the natural qualitative
counterpart for the quantitative degree of absolute confirmation, i.e. Pr (H | E ∧ B). The reason is
that later on the difference between Pr (H | E ∧ B) and Pr (H | B)—in whatever way it is measured
(Fitelson, 1999)—is taken as the degree of incremental confirmation, and Carnap’s proposal is the
natural qualitative counterpart of this notion of incremental confirmation. See section 5.
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On the other hand, a sentence is the more plausible, the fewer possibilities it excludes,
i.e. the more possibilities it includes. Hence, the logically weaker a sentence, the more
plausible it is. The qualitative counterparts of these two comparative principles are the
two defining clauses above. If H is informative relative to E, then so is any logically
stronger sentence. Similarly, if H is plausible given E, then so is any logically weaker
sentence.

According to HD, E confirms H relative to B iff the conjunction of H and B logi-
cally implies E (in some suitable way). Hence, if E HD-confirms H relative to B, and
if H′ logically implies H, then E HD-confirms H′ relative to B (provided the suitable
way does not render logical implication non-monotonic). So HD-confirmation is an
informativeness relation. According to qualitative IL, E confirms H relative to B iff
Pr (H | E ∧ B) > r, for some r ∈ [

.5, 1). Hence, if E absolutely IL-confirms H relative
to B, and if H logically implies H′, then E absolutely IL-confirms H′ relative to B. So
absolute IL-confirmation is a plausibility relation.

The epistemic values behind these two concepts are informativeness on the one
hand and truth or plausibility on the other. We aim at theories that are true in the
world we are in. And we aim at theories that inform us about the world we are in.
Usually we do not know which world we are in, though. All we have are some data
(and background assumptions). So we base our evaluation of the theory we are con-
cerned with on the plausibility that the theory is true in the actual world given that
the actual world makes the data true; and on how much the theory informs us about
the actual world given that the actual world makes the data true.

Turning back to the question we started from—What is a good theory?—we can
now say that, according to HD, a good theory is informative, whereas IL says good
theories are probable or true. Putting together these two claims gives us the plausibil-
ity-informativeness theory of theory assessment:

a good theory is true and informative.

3 Assessing theories

Given evidence E and background information B, a hypothesis H should be both as
informative and as plausible as possible. A strength indicator s measures how infor-
mative H is relative to E and B. A truth indicator t measures how plausible it is that
H is true in view of E and B. Of course, not any function will do.

Definition 2 A possibly partial function f : L × L × L → 	 is an evidence based truth
indicator on L iff for all 〈H, E, B〉, 〈

H′, E, B
〉 ∈ Domf :

B, E � H → H′ ⇒ f (H, E, B) ≤ f
(
H′, E, B

)
.

f is an evidence neglecting truth indicator on L iff for all 〈H, E, B〉, 〈
H′, E, B

〉 ∈ Domf :

B � H → H′ ⇒ f (H, E, B) ≤ f
(
H′, E, B

)
.

Observation 1 Let f be an evidence based truth indicator on L. Then we have for all
〈H, E, B〉, 〈¬H, E, B〉, 〈

H′, E, B
〉 ∈ Domf :

B, E � H ⇒ f (¬H, E, B) ≤ f
(
H′, E, B

) ≤ f (H, E, B) .

Let f be an evidence neglecting truth indicator on L. Then we have for all 〈H, E, B〉,
〈¬H, E, B〉, 〈

H′, E, B
〉 ∈ Domf :
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B � H ⇒ f (¬H, E, B) ≤ f
(
H′, E, B

) ≤ f (H, E, B) .

The range of f is taken to be (a subset of) 	. One could strive for maximal generality
by taking the range of f to be any ordered set in which differences can be expressed.
The defining clause takes care of the fact that the set of possibilities (possible worlds,
models) falsifying a hypothesis H is a subset of the set of possibilities falsifying any
hypothesis that logically implies H. Here the set of possibilities is restricted to those
not already ruled out by (the data and) the background information. It follows that
logically equivalent theories always have the same plausibility (f -value), provided the
relevant tuples 〈H, E, B〉 are in the domain of f .

The observation states that we cannot demand more—as far as only our aim of
arriving at true theories is concerned—than that (the evidence and) the background
assumptions our assessment is based on guarantee (in the sense of logical implication)
that the theory to be assessed is true. Similarly, a theory cannot do worse—as far as
only our aim at arriving true theories is concerned—than that (the conjunction of
the data and) the background information guarantees that our theory is false. In the
following I will only consider evidence based truth indicators. So whenever I speak of
a truth indicator I mean an evidence based truth indicator.

Definition 3 A possibly partial function f: L×L×L → 	 is an evidence based strength
indicator on L iff for all 〈H, E, B〉, 〈

H′, E, B
〉 ∈ Domf :

B, ¬E � H → H′ ⇒ f
(
H′, E, B

) ≤ f (H, E, B) .

f is an evidence neglecting strength indicator on L iff for all 〈H, E, B〉, 〈H′, E, B
〉 ∈ Domf :

B � H → H′ ⇒ f
(
H′, E, B

) ≤ f (H, E, B) .

f is a strength indicator on L iff there is an evidence based strength indicator f1,
an evidence neglecting strength indicator f2, and a function g : Rf1 × Rf2 → 	
such that Domf = Domf1 ∩ Domf2 , f (H, E, B) = g (f1 (H, E, B) , f2 (H, E, B)) for all
〈H, E, B〉 ∈ Domf , and g is non-decreasing in both and increasing in at least one of its
arguments f1 and f2, where Rf1 ⊆ 	 is the range of f1 and Rf2 ⊆ 	 is the range of f2.

Observation 2 Let f be an evidence based strength indicator on L. Then we have for
all 〈H, E, B〉, 〈¬H, E, B〉, 〈

H′, E, B
〉 ∈ Domf :

B, ¬E � H ⇒ f (H, E, B) ≤ f
(
H′, E, B

) ≤ f (¬H, E, B) .

Let f be an evidence neglecting strength indicator on L. Then we have for all 〈H, E, B〉,
〈¬H, E, B〉, 〈

H′, E, B
〉 ∈ Domf :

B � H ⇒ f (H, E, B) ≤ f
(
H′, E, B

) ≤ f (¬H, E, B) .

Every evidence based strength indicator is a strength indicator, and every strength
indicator is an evidence neglecting strength indicator.

The requirement takes into account that the set of possibilities falsified by a hypothe-
sis H is a subset of the set of possibilities ruled out by any theory logically implying H.
The set of possibilities is again restricted to those (ruled out by the data but) allowed
for by the background assumptions. It follows that logically equivalent theories are
always equally informative (about the data) (have the same f -value), provided the
relevant tuples 〈H, E, B〉 are in the domain of f .
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The first part of the observation says that a theory cannot do better in terms of
informing about the data than logically implying them. Although this is not ques-
tionable, one might take this as a reason to reject the notion of informing about the
data (it is inappropriate, so the objection, to ascribe maximal informativeness to any
theory logically implying the evidence). Two theories, one might say, both logically
implying all of the data can still differ in their informativeness. For instance, consider
a complete theory consistent with the data and a theory-like collection of all the data
gathered so far.3 This is perfectly reasonable. Hence the distinction between evidence
based and evidence neglecting strength indicators. The notion of a strength indicator
is introduced in order to avoid that one has to take sides, though one can do so (g
need not be increasing in both arguments). The discussion of how to measure infor-
mativeness will be taken up again when the present paradigm-independent theory is
spelt out in terms of subjective probabilities.

In all four cases, the defining clauses express that strength indicators and truth
indicators increase and decrease, respectively, with the logical strength of the theory
to be assessed. These quantitative requirements correspond to the defining clauses of
the qualitative relations of informativeness and plausibility, respectively.

Obviously, an assessment function a should not be both a strength and a truth indi-
cator. The reason is that any strength indicating truth indicator is a constant function.
Let us call this observation the singularity of simultaneously indicating strength and
truth. Instead, an assessment function a should weigh between these two conflicting
aspects: a should be sensitive to both truth and informativeness.

Definition 4 Let s be a strength indicator, let t be a truth indicator, and let β ∈ 	.
A possibly partial function f : L × L × L → 	 is sensitive to informativeness and
plausibility in the sense of s and t and with demarcation β—or for short: an s, t-function
(with demarcation β)—iff there is a function g : Rs × Rt × X → 	 such that g is a
function of, among others, s and t, i.e. f (H, E, B) = g (s (H, E, B) , t (H, E, B) , x) for
all 〈H, E, B〉 ∈ Doms ∩ Domt, such that

1. Continuity
Any surplus in informativeness succeeds, if the shortfall in plausibility is small
enough.
∀ε > 0 ∃δε > 0 ∀s1, s2 ∈ Rs ∀t1, t2 ∈ Rt ∀x ∈ X :
s1 > s2 + ε & t1 > t2 − δε ⇒ g (s1, t1, x) > g (s2, t2, x) .

2. Demarcation
∀x ∈ X : g (smax, tmin, x) = g (smin, tmax, x) = β.

If s (⊥, E, B) and s (�, E, B) are defined, they are the maximal and minimal values
of s, smax and smin, respectively. If t (�, E, B) and t (⊥, E, B) are defined, they are the
maximal and minimal values of t, tmax and tmin, respectively. As before, ‘Rs’ and ‘Rt’
denote the range of s and the range of t, respectively. f (H, E, B) is a function of,
among others, s (H, E, B) and t (H, E, B). I will sometimes write ‘f (H, E, B)’ and at
other times ‘g (s1, t1)’, dropping the additional argument place, and at still other times
‘f (s1, t1)’, treating f as g (s, t).

Continuity implies

3. Weak Continuity

3 One might want to restrict the term ‘theory’ to lawlike statements. I do not. Nor do I want to suggest
that the collection of all data is lawlike.
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∀s1, s2 ∈ Rs : s1 > s2 ∃δs1,s2 > 0 ∀t1, t2 ∈ Rt :
t1 > t2 − δs1,s2 ⇒ g (s1, t1) > g (s2, t2) .

The difference is that, in its stronger formulation, Continuity requires δ just to depend
on the lower bound ε of the difference between s1 and s2, and not on the numbers s1
and s2 themselves. Thus, in the case of Weak Continuity, if s1,i = 1

i+1 + a, a > 0, and

s2,i = 1
i+1 , for i ∈ N, there may be no common upper bound δ = δs1,i,s2,i by which t1,i

must not be smaller than t2,i in order for g
(
s1,i, t1,i

)
> g

(
s2,i, t2,i

)
to hold—the respec-

tive upper bounds may be, say, δi = 1
n·i for t1,i and t2,i. (In case of infinitely many s1,is

and s2,is, one cannot always take δ = inf
{
δs1,i,s2,i : i ∈ N

}
, because the latter expression

may be 0, as is the case in the example.) Continuity demands that δ depend only on
the lower bound ε by which s1 exceeds s2. Thus, for s1i , s2,i there must exist a common
δ depending just on the lower bound, say, ε = a

2 —there are, of course, uncountably
many such εs for which there exist (not necessarily distinct) δεs.

The difference between Continuity and Weak Continuity is related to the differ-
ence between evidence based and evidence neglecting strength indicators. When one
is concerned with two hypotheses H1 and H2 and considers the incoming data one at
a time, the plausibility of the His in general changes with each new piece of evidence
(assuming an evidence based truth indicator). In case of evidence based strength
indicators, the informativeness of H1 and H2 also changes with each new piece of evi-
dence, whereas it remains the same for evidence neglecting strength indicators. The
idea behind Continuity is that the more informative of the two hypotheses, say H1,
eventually comes out as the better theory, if H1’s shortfall in plausibility converges to
zero (or if H1 becomes more plausible than H2). If the informativeness of the Hi itself
changes with each new piece of evidence, though the informativeness of H1 is always
greater than that of H2, one cannot refer to the difference between the informative-
ness values of H1 and H2. One can, however, refer to the minimal difference between
the two informativeness values—unless this difference goes itself to 0, in which case
H1 should not necessarily come out as the better theory anyway. In case one prefers to
work with evidence neglecting strength indicators, one can stick to Weak Continuity.

As just said, the idea behind Continuity is that the more informative of two hypoth-
eses eventually comes out as the better one, if its shortfall in plausibility vanishes. In
particular, this should hold if the plausibility of the two hypotheses converges to cer-
tainty (more precisely, if their plausibility becomes either arbitrarily close to certainly
true or arbitrary close to certainly false).

4. Continuity in Certainty
Any surplus in informativeness succeeds, if plausibility becomes certainty.

∀ε > 0 ∀ti, t′i ∈ Rt : ti, t′i →i

{
tmax

tmin
∃n∀m ≥ n ∀sm, s′

m ∈ Rs :

sm > s′
m + ε ⇒ g (sm, tm) > g

(
s′

m, t′m
)

.
5. Weak Continuity in Certainty

∀s0, s′
0 ∈ Rs : s0 > s′

0 ∀ti, t′i ∈ Rt : ti, t′i →i

{
tmax

tmin
∃n∀m ≥ n :

g (s0, tm) > g
(
s′

0, t′m
)

.

Weak Continuity implies that g increases in s, i.e.

6. Informativeness: s0 > s1 ⇒ g (s0, t0) > g (s1, t0) .

If we additionally assume that g is a function of s and t only, we get
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Lovelinesss: g (s0, t0) ≥ g (s1, t0) ⇔ s0 ≥ s1.

Although Continuity implies

7. s0 > s1 & t0 ≥ t1 ⇒ g (s0, t0) > g (s1, t1),

it does not imply that g increases in t, i.e.

0. Plausibility: t0 > t1 ⇒ g (s0, t0) > g (s0, t1).

(s0, s1 are any values in Rs, and t0, t1 are any values in Rt.)
This asymmetry is due to the fact that truth is a qualitative yes-or-no affair. A sen-

tence either is or is not true in some world. By contrast, informativeness (about some
data) is a matter of degree. In case of truth, degrees enter the scence only because we
do not know in general, given only the data, whether or not a theory is true in any
world the data could be taken from. In case of informativeness, however, degrees are
present even if we have a complete and correct assessment of the informational value
of the theory under consideration (or, more cautiously, there is at least a partial order
that is induced by the consequence or subset relation).

Weak Continuity in Certainty implies

8. Maximality: g (s0, t0) = gmax ⇒ s0 = smax

9. Minimality: g (s0, t0) = gmin ⇒ s0 = smin.

If we additionally assume Plausibility, we get

10. Maximality II: g (s0, t0) = gmax ⇒ s0 = smax & t0 = tmax

11. Minimality II: g (s0, t0) = gmin ⇒ s0 = smin & t0 = tmin.

If we finally add that g is a function of s and t only, we get the converse of 10 and
of 11.

The conjunction of Continuity and Demarcation does not imply

Symmetry: g (s1, t1) = g (t1, s1) .

Assessment functions may consider one aspect, say plausibility, more important than
the other. The only thing that is ruled out is to completely neglect one of the two
aspects, as do, for instance,

r = t
1 − s

and l = t · s
(1 − t) · (1 − s)

when t = 0, where Rs = Rt = [
0, 1

]
. Furthermore, even if Plausibility is assumed and

g is a function of s and t only, the conjunction of Continuity and Demarcation does
not imply that for a given value s0 ∈ Rs there is a value t0 ∈ Rt such that g (s0, t0) = β.

The functions r and l have the following properties:

s0 > smin ⇒ g (s0, tmin) = gmin,

smax > s0 > smin ⇒ g (s0, tmin) = gmin & g (s0, tmax) = gmax,

respectively. The first says that in the special case of plausibility being minimal, infor-
mativeness does not count anymore. But clearly, a theory which is refuted by the
data—in which case evidence based plausibility is minimal—can still be better than
another theory which is also refuted by the data. After all, (almost) every interesting
theory from, say, physics, has turned out to be false—and we nevertheless think there
has been progress! The second property additionally says that in the special case of
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plausibility being maximal, informativeness does not count anymore either. So not
only is any falsified theory as bad as any other falsified theory; we also have that every
verified theory is as good as any other verified theory. In contrast,

d = t + s + c, Rt = Rs = [
0, 1

]
,

is sensitive to informativeness and plausibility with demarcation c + 1, and thus does
not exhibit the discontinuity of r and l. If c = −1, then

df = [
t + s − 1

] · f (E, B) ,

with f a positive function not depending on H, also satisfies Plausibility, Continuity,
and Demarcation, though it is not a function of s and t only. Finally, note that any
s, t-function is invariant with respect to (or closed under) equivalence transformations
of H, if it is a function of s and t only.

4 Assessing theories, Bayes style

4.1 The Bayesian plausibility-informativeness theory

What has been seen so far is the general plausibility-informativeness theory of theory
assessment. In a nutshell, its message is (1) that there are two values a theory should
exhibit: truth and informativeness—measured respectively by a truth indicator t and
a strength indicator s; (2) that these two values are conflicting in the sense that the
former is a decreasing and the latter an increasing function of the logical strength of
the theory to be assessed; and (3) that in assessing a given theory one should weigh
between these two conflicting aspects in such a way that any surplus in informative-
ness succeeds, if the shortfall in plausibility is small enough. Particular accounts arise
by inserting particular strength indicators and truth indicators.

The theory can be spelt out in terms of Spohn’s (1980, 1990) ranking theory (Huber,
2007a), and in a syntactical paradigm that goes back to Hempel (1943, 1945) (Huber,
2004). Here, however, I will focus on the Bayesian version, where I take Bayesianism
to be the threefold thesis that (i) scientific reasoning is probabilistic; (ii) probabilities
are adequately interpreted as an agent’s actual degrees of belief; and (iii) they can be
measured by her betting behavior.

Spelling out the general theory in terms of subjective probabilities simply means
that we specify a (set of) probabilistic strength indicator(s) and a (set of) probabilistic
truth indicator(s). Everything else is accounted for by the general theory. The nice
thing about the Bayesian paradigm is that once one is given hypothesis H, evidence
E, and background information B, one is automatically given the relevant numbers
Pr (H | E ∧ B) , . . . , and the whole problem reduces to the definition of a suitable
function of Pr.4

In this paradigm it is natural to take

tPr (H, E, B) = Pr (H | E ∧ B) = p

as truth indicator, and

4 This is not the case in the Hempel paradigm. There the numbers have to be squeezed out of the
logical structure of H, E, and B and nothing else. As a consequence, these values are uniquely deter-
mined by H, E, and B and the logical consequence relation. In particular, they are independent of the
underlying language (Huber, 2004).
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sPr (H, E, B) = Pr (¬H | ¬E ∧ B) = i, s′
Pr (H, B) = Pr (¬H | B) = i′

as evidence based and evidence neglecting strength indicators, respectively. Here Pr
is a regular probability measure on the underlying language or field of propositions.5

The choice of p hardly needs any discussion. For the choice of i consider the following
figure with hypothesis H, evidence E, and background information B (conceived of
as propositions).

Suppose we want to strengthen H by deleting possibilities verifying it, that is, by
shrinking the area representing H. In this case i recommends to delete possibilities
outside E. The reason is that, given E, those are exactly the possibilities known not to
be the actual one, whereas the possibilities inside E are still alive options. Thus, when
H shrinks to H′ as depicted below, the probabilistic evidence based strength indicator
i increases.

For the probabilistic evidence neglecting strength indicator i′ it does not matter which
possibilities one deletes in strengthening H (provided all possibilities have equal
weight on Pr). i′ neglects whether they are inside or outside E. The strength indicator
i∗α with parameter α ∈ [

0, 1
]

is given by

i∗α = α · Pr (¬H | ¬E, B) + (1 − α) · Pr (¬H | B) = α · i + (1 − α) · i′.

5 Regularity is often paraphrased as open-mindedness (Earman, 1992), because it demands that no
consistent statement be assigned probability 0. Given a subjective interpretation of probability, this
sounds like a restriction on what one is allowed to believe (to some degree). Regularity can also
be formulated as saying that any statement H1 which logically implies but is not logically implied
by some other statement H2 must be assigned a strictly lower degree of belief than H2. (In case of
probabilities conditional on B, logical implication is also conditional on B.) Seen this way, regularity
requires degrees of belief which are sufficiently fine-grained. For this reason I prefer to think of regu-
larity not as a restriction on what (which propositions) to believe (to some degree), but as a restriction
on how to believe (propositions), namely, sufficiently fine-grained so that differences so big as to be
expressible purely in terms of the logical consequence relation are not swept under the carpet.
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For i∗α , it depends on α how much it matters whether the deleted possibilities lie inside
or outside of E.

Other candidates for measuring informativeness that are (suggested by measures)
discussed in the literature6 are

i′′ = Pr (¬H | E ∧ B) ,

cont = Pr (E) · Pr (¬H | E ∧ B) ,

inf = − log2 Pr (H | E ∧ B) .

These measures, all of which assign minimal informativeness to any theory entailed by
the data and the background assumptions, do pretty bad on this count. They require
the deletion of possibilities inside E. They measure how much the information in H
goes beyond the information provided by E. This is not the appropriate notion of
informativeness for present purposes, though (see section 4.3 for more on this).

The background information B plays a role different from that of the data E for
i∗α , but not for i′′, cont, or inf. If there is a difference between data on the one hand
and background assumptions on the other, then this difference should show up some-
where. According to one view (Hendricks, 2006), background assumptions determine
the set of possibilities. Seen this way they are nothing but restrictions on the set of
possible worlds over which inquiry has to succeed. Evidence based strength indicators
reflect this difference. They measure how much a theory informs about the data, but
not how much a theory informs about the background assumptions. However, if one
holds there should be no difference between E and B as far as measuring informative-
ness is concerned, then one can nevertheless adopt the above measures by substituting
E′ = E ∧ B and B′ = � for E and B, respectively.

4.2 Incremental confirmation

Let us see how this approach compares to Bayesian confirmation theory. The following
notion is central in this literature (Fitelson, 2001).

Definition 5 A possibly partial function f = fPr : L × L × L → 	 is a β-relevance
measure based on Pr just in case it holds for all H, E, B ∈ L with Pr (E ∧ B) > 0:

f (H, E, B)

>

=
<

β ⇔ Pr (H | E ∧ B)

>

=
<

Pr (H | B) .

As

Pr (H | E ∧ B) > Pr (H | B) ⇔ Pr (¬H | ¬E ∧ B) > Pr (¬H | B) (1)

for 0 < Pr (E | B) < 1 and Pr (B) > 0, every i, p-function sc = p + i + c, c ∈ 	,
is a c + 1-relevance measure in the Bayesian sense (where p and i depend on Pr).
Similarly, every i′, p-function s′

c = p+ i′ + c is a c+1-relevance measure. Hence, every
i∗, p-function

s∗
c = p + i∗ + c, c ∈ 	,

6 Cf. Carnap and Bar-Hillel (1952), Bar-Hillel and Carnap (1953), and Hintikka and Pietarinen (1966).
Cf. also Bar-Hilllel (1952, 1955). In Levi (1967), i′′ is proposed as, roughly, a measure for the relief
from agnosticism afforded by accepting H as strongest relative to total evidence E ∧ B.
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is a c + 1-relevance measure, where i∗ is a strength indicator based on i and i′.
For c = −1 and i∗ = i′, one gets the distance measure d,

dPr (H, E, B) = Pr (H | E ∧ B) − Pr (H | B)

(Earman, 1992). For c = −1 and i∗ = i, one gets the Joyce–Christensen measure s,

sPr (H, E, B) = Pr (H | E ∧ B) − Pr (H | ¬E ∧ B)

(Joyce, 1999; Christensen, 1999). As noted earlier at the end of section 3, for positive
f not depending on H, the functions

df = [
i + p − 1

] · f (E, B)

are i, p-functions with demarcation 0. For f = Pr (¬E | B) we get (again) the distance
measure d, and for f = Pr (¬E | B) · Pr (B) · (E ∧ B) we get the Carnap measure c,

cPr (H, E, B) = Pr (H ∧ E ∧ B) · Pr (B) − Pr (H ∧ B) · Pr (E ∧ B)

(Carnap, 1962). Hence the Carnap measure c, the difference measure d, and Joyce–
Christensen measure s are three different ways of weighing between the two functions
i and p (or between i′ and p, for s = d/ Pr (¬E | B) and c = d · Pr (B) · Pr (E ∧ B)).
Alternatively, the difference between d and s can be seen not as one between the way
of weighing, but as one between what is weighed—namely two different pairs of func-
tions, viz. i and p for the difference measure d, and i′ and p for the Joyce–Christensen
measure s. This is clearly seen by rewriting d and s as

dPr = Pr (H | E ∧ B) + Pr (¬H | B) − 1,

sPr = Pr (H | E ∧ B) + Pr (¬H | ¬E ∧ B) − 1.

In this sense part of the discussion about the right measure of incremental confir-
mation turns out to be a discussion about the right measure of informativeness of a
hypothesis relative to a body of evidence. This view is endorsed by the observation
that d and s actually employ the same decision-theoretic considerations7:

dPr = Pr (H | E ∧ B) − Pr (H | B)

= Pr (H | E ∧ B) − Pr (H | B) · Pr (H | E ∧ B) −
− Pr (H | B) + Pr (H | B) · Pr (H | E ∧ B)

= Pr (¬H | B) · Pr (H | E ∧ B) − Pr (H | B) · Pr (¬H | E ∧ B)

= i′ (H, B) · Pr (H | E ∧ B) − i′ (¬H, B) · Pr (¬H | E ∧ B) ,

sPr = Pr (H | E ∧ B) − Pr (H | ¬E ∧ B)

= Pr (H | E ∧ B) − Pr (H | ¬E ∧ B) · Pr (H | E ∧ B) −
− Pr (H | ¬E ∧ B) + Pr (H | ¬E ∧ B) · Pr (H | E ∧ B)

= Pr (¬H | ¬E ∧ B) · Pr (H | E ∧ B) − Pr (H | ¬E ∧ B) · Pr (¬H | E ∧ B)

= i (H, E, B) · Pr (H | E ∧ B) − i (¬H, E, B) · Pr (¬H | E ∧ B) .

So d and s are exactly alike in the way they combine or weigh between informative-
ness and plausibility. They both form the expected informativeness of the hypothesis
(about the data and relative to the background assumptions). Their difference lies in
the way they measure informativeness.

7 Cf. Hintikka and Pietarinen (1966), Levi (1961, 1963), but also Hempel (1960).
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4.3 Expected informativeness

What results do we get from the decision-theoretic way of setting confirmation equal
to the expected informativeness for the measures i′′, cont, and inf mentioned in section
4.1? Let ‘i′′ (H)’ be short for ‘i′′ (H, E, B)’, and similarly for ‘cont (H)’ and ‘inf (H)’.

E
(
i′′ (H)

) = i′′ (H) · Pr (H | E ∧ B) − i′′ (¬H) · Pr (¬H | E ∧ B)

= Pr (¬H | E ∧ B) · Pr (H | E ∧ B) −
− Pr (H | E ∧ B) · Pr (¬H | E ∧ B)

= 0

E (cont (H)) = cont (H) · Pr (H | E ∧ B) − cont (¬H) · Pr (¬H | E ∧ B)

= Pr (E) · Pr (¬H | E ∧ B) · Pr (H | E ∧ B) −
− Pr (E) · Pr (H | E ∧ B) · Pr (¬H | E ∧ B)

= 0

E (inf (H)) = inf (H) · Pr (H | E ∧ B) − inf (¬H) · Pr (¬H | E ∧ B)

= − log2 Pr (¬H | E ∧ B) · Pr (H | E ∧ B) +
+ log2 Pr (H | E ∧ B) · Pr (¬H | E ∧ B)

>

=
<

0

⇔ Pr (H | E ∧ B)

>

=
<

Pr (¬H | E ∧ B)

Hence only inf gives a non-trivial answer, viz. to maximize probability. Maximizing
probability is also what the “Acceptance rule based on relative-content measure of
utility” from Hempel (1960) requires (I have dropped the body of background infor-
mation B, because Hempel does not have it, and I took his content measure m (·) to be
1 − Pr (·), which is in accordance with his remarks on p. 76 of Hempel (1965) and with
Hempel (1962) and Hempel and Oppenheim (1948)). Hempel’s “Relative-content
measure of purely scientific utility” is this:

rc (H, E) = iH (H, E) · Pr (H | E) − iH (H, E) · Pr (¬H | E)

= Pr (¬H ∧ E)

Pr (¬E)
· Pr (H | E) − Pr (¬H ∧ E)

Pr (¬E)
· Pr (¬H | E)

= Pr (¬H ∧ E)

Pr (¬E)
(2 · Pr (H | E) − 1) .

However, as noted by Hintikka and Pietarinen (1966, fn. 12), it seems more adequate
to consider

E (iH (H, E)) = iH (H, E) · Pr (H | E ∧ B) − iH (¬H, E) · Pr (¬H | E ∧ B)

= Pr (¬H ∧ E)

Pr (¬E)
· Pr (H | E) − Pr (H ∧ E)

Pr (¬E)
· Pr (¬H | E)

= 0.

Given this result, it is clear why Hintikka and Pietarinen (1966) choose i′ = Pr (¬H)

as measure of information, and thus arrive at the distance measure d as shown above.
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Forming assessment values by taking the expected informativeness is thus allowed,
but not required by the Bayesian version of the plausibility-informativeness theory.
Here is the expected informativeness for the measures i∗α , α ∈ [

0, 1
]
:

E
(
i∗α (H, E, B)

) = α · sPr + (1 − α) · dPr .

4.4 Is it likely to be lovely?

Lipton (2004) suggests the view that a theory which is lovely in his sense (which pro-
vides a lot of good explanations) is also likely to be true. Loveliness, as understood
here, is an indicator of the informativenss of a theory, and thus need not have anything
to do with explanation. Still, one might ask whether “it is likely to be lovely”.

The first way to make this question more precise is to ask whether, given no data at
all, a lovely theory is also a likely one. This is, of course, not the case, as is clear from
the fact that loveliness and likeliness are conflicting in the sense that the former is an
increasing, and the latter a decreasing function of the logical strength of the theory
to be assessed. However, the equivalence in (1) gives rise to another way of putting
this question. Given that a piece of evidence E raises the loveliness of H relative to
B, does that piece of evidence also raise the likeliness of H relative to B?8

Let E0, . . . , En−1, En be the evidence seen up to stage n + 1 of the inquiry. Then
the answer is affirmative if, at stage n + 1, one considers the total available evidence
E = E0 ∧· · ·∧En−1 ∧En and asks whether the likeliness of H given E and background
information B is greater than the likeliness of H at stage 0 before the first datum came
in, i.e. whether

Pr (H | E ∧ B) > Pr (H | B) .

As we have seen, this holds just in case the loveliness of H relative to E and B,
Pr (¬H | ¬E ∧ B), is greater than H’s loveliness at stage 0, when it may be set equal
to Pr (¬H | B).9 So on the global scale, lovely theories are likely to be true. However,
the answer is negative on the local scale where one considers just the single datum
En. At stage n, the loveliness and the likeliness of H relative to B and the data seen
so far are given by

sn = Pr
(¬H | ¬ (

E0 ∧ · · · ∧ En−1
) ∧ B

)
, tn = Pr

(
H | E0 ∧ · · · ∧ En−1 ∧ B

)
.

Now suppose the next datum En at stage n + 1 raises the loveliness of H relative to B
and the data seen so far, sn+1 > sn, i.e.

Pr
(¬H | ¬ (

E0 ∧ · · · ∧ En−1 ∧ En
) ∧ B

)
> Pr

(¬H | ¬ (
E0 ∧ · · · ∧ En−1

) ∧ B
)

.

Does it follow that tn+1 > tn, i.e.

Pr
(
H | E0 ∧ · · · ∧ En−1 ∧ En ∧ B

)
> Pr

(
H | E0 ∧ · · · ∧ En−1 ∧ B

)
?

8 According to i′, the informativeness of a theory is independent of the data, and so it does not
make sense to ask whether a piece of evidence E raises the loveliness—in the sense of i′—of some
hypothesis H relative to a body of background information B. Therefore only i is considered in the
following.
9 It may justifiedly be argued that the loveliness of H at stage 0 before the first datum came in is not
Pr (¬H | B), but rather is not defined. This follows if the “empty datum”, i.e. the one before the first
datum came in, is represented by �. Stipulating that s0 is defined and equal to Pr (¬H | B) should
only enable me to make sense of the question whether it is likely to be lovely.
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It does not. What holds true is that

tn+1 > tn
⇔

Pr
(¬H | E0 ∧ · · · ∧ En−1 ∧ ¬En ∧ B

)
> Pr

(¬H | E0 ∧ · · · ∧ En−1 ∧ B
)

,

given that the relevant probabilities are non-negative. But tn+1 may be smaller than
tn, even if sn+1 > sn.10 Thus, although on the global scale a lovely theory is also a
likely one, this does not hold true on the local scale, where single pieces of evidence
are considered.

5 The logic of theory assessment

In Huber (2007b, sct. 6) I briefly indicate how the plausibility-informativeness theory
sheds new light on some problems in the philosophy of science. Here I will restrict
myself to a discussion of Hempel’s conditions of adequacy and the question of a logic
of confirmation or theory assessment. This topic is treated in more detail in Huber
(2007a) and Huber (submitted).

5.1 Hempel’s conditions of adequacy

In his “Studies in the Logic of Confirmation” (1945) Carl G. Hempel presents the
following conditions of adequacy for any relation of confirmation |∼ ⊆ L × L on
some language L (the names of 3.1 and 3.2 are not used by Hempel):

1. Entailment Condition: E � H ⇒ E |∼ H
2. Consequence Condition: {H : E |∼ H} � H′ ⇒ E |∼ H′

2.1 Special Consequence Cond.: E |∼ H, H � H′ ⇒ E |∼ H′
2.2 Equivalence Condition: E |∼ H, H �� H′ ⇒ E |∼ H′

3. Consistency Condition: {E} ∪ {H : E |∼ H} �� ⊥
3.1 Special C. C.: E �� ⊥, E |∼ H, H � ¬H′ ⇒ E �|∼ H′

10 The same holds true on both the local and the global scale, if one takes the measure i′′ =
Pr (¬H | E ∧ B) instead of Pr (¬H | ¬E ∧ B). The reason is that

Pr
(¬H | E0 ∧ · · · ∧ En−1 ∧ En ∧ B

)
< Pr

(¬H | E0 ∧ · · · ∧ En−1 ∧ B
)

and
Pr (¬H | E ∧ B) < Pr (¬H | B) ,

if
Pr

(
H | E0 ∧ · · · ∧ En−1 ∧ En ∧ B

)
> Pr

(¬H | E0 ∧ · · · ∧ En−1 ∧ B
)

and
Pr (H | E ∧ B) > Pr (H | B) ,

respectively. Though i′′ is a decreasing function of the logical strength of H, it is not an evidence
based strength indicator in the sense defined, because Pr (¬H | E ∧ B) need not equal 1 if H, B � E.
Moreover, according to the i′′, p-function s′′c = i′′ + p + c, every theory H has the same value c + 1
independently of the given evidence E and background information B.

As I learned in September 2003, Levi (personal correspondence) now favors i′ = Pr (¬H | B)

as a measure of the informativeness of H given B. According to this measure, informativeness is a
virtue of a theory H relative to background information B which is independent of the data E. This
is not true for i = Pr (¬H | ¬E ∧ B). Interestingly i′ violates a condition of adequacy Levi himself
holds (Levi 1986): any two theories which are logically equivalent given evidence E and background
knowledge B should be assigned the same value. This condition does not hold of i, p-functions and
has the consequence that any two refuted theories are assigned the same value. Given the history of
science, this is inappropriate for a theory of theory assessment.
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3.2 Consistent Selectivity: E �� ⊥, E |∼ H ⇒ E �� ¬H
4. Converse Consequence Condition: E |∼ H, H′ � H ⇒ E |∼ H′

Hempel then shows that 1, 2, and 4 entail that every sentence (observation report) E
confirms every sentence (hypothesis or theory) H, i.e. for all E, H ∈ L: E |∼ H. This
is clear, since 1 and 4 already entail this result. By 1, E |∼ E∨H, whence E |∼ H by 4.
Since Hempel’s negative result, there has hardly been any progress in constructing a
logic of confirmation.11 One reason seems to be that up to now the predominant view
on Hempel’s conditions is the analysis Carnap gives in §87 of his Logical Foundations
of Probability (1962).

5.2 Carnap’s analysis of Hempel’s conditions

In analyzing the Consequence Condition, Carnap argues that

[. . .] Hempel has in mind as explicandum the following relation: ‘the degree of
confirmation of H by E is greater than r’, where r is a fixed value, perhaps 0 or
1/2. (Carnap, 1962, p. 475; notation adapted)

In discussing the Consistency Condition, Carnap mentions that

Hempel himself shows that a set of physical measurements may confirm several
quantitative hypotheses which are incompatible with each other (p. 106). This
seems to me a clear refutation of [3.1]. [. . .] What may be the reasons that have
led Hempel to the consistency conditions [3.1] and [3]? He regards it as a great
advantage of any explicatum satisfying [3] “that is sets a limit, so to speak, to the
strength of the hypotheses which can be confirmed by given evidence” [. . .] This
argument does not seem to have any plausibility for our explicandum (Carnap,
1962, pp. 476–477; emphasis in the original)

which is the concept of “initially confirming evidence”, as Carnap calls it in §86 of his
(1962), that he explicates by positive probabilistic relevance.

But it is plausible for the second explicandum mentioned earlier: the degree of
confirmation exceeding a fixed value r. Therefore we may perhaps assume that
Hempel’s acceptance of the consistency condition is due again to an inadvertant
shift to the second explicandum. (Carnap, 1962, pp. 477–478.)

Carnap’s analysis can be summarized as follows. In presenting his first three conditions
of adequacy Hempel was mixing up two distinct concepts of confirmation, two distinct
explicanda in Carnap’s terminology. The first concept is explicated by incremental
confirmation (positive probabilistic relevance) according to which E incrementally
confirms H iff Pr (H | E) > Pr (H). The second concept is explicated by absolute con-
firmation according to which E absolutely confirms H iff Pr (H | E) > r, for some
r ∈ [

.5, 1). The special versions of Hempel’s second and third conditions hold true
for the second explicatum, 2.1 and 3.1, respectively, but they do not hold true for the
first explicatum. On the other hand, Hempel’s first condition 1 holds true for the first

11 The exceptions I know of are Flach (2000), Milne (2000), and Zwirn and Zwirn (1996). Roughly,
Zwirn and Zwirn (1996) argue that there is no unified logic of confirmation (taking into account all
of the partly conflicting aspects of confirmation). Flach (2000) argues that there are two logics of
“induction”, as he calls them, viz. confirmatory and explicatory induction (corresponding to Hempel’s
conditions 1–3 and 4, respectively). Finally, Milne (2000) argues that there is a logic of confirmation
(namely the logic of positive probabilistic relevance), but that it does not deserve to be called a logic.
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explicatum, but it does so only in a qualified form (cf. Carnap, 1962, 473)—namely
only if E does not have probability 0, and H does not already have probability 1.

This, however, means that Hempel first had in mind one explicandum (explicated
by incremental confirmation) for the Entailment Condition. Then he had in mind
another explicandum (explicated by absolute confirmation) for the Special Conse-
quence and the Special Consistency Conditions. And when Hempel finally presented
the Converse Consequence Condition, he got completely confused, so to speak, and
had in mind still another explicandum or concept of confirmation (neither abso-
lute nor incremental confirmation satisfy 4). Apart from not being very charitable,
Carnap’s reading of Hempel also leaves open the question what this third explicandum
might have been.

5.3 Hempel vindicated

As to Hempel’s Entailment Condition, note that it is satisfied by absolute confirma-
tion without the second qualification. If E logically implies H, then Pr (H | E) = 1 > r,
for any r ∈ [

0, 1), provided E does not have probability 0 (this proviso can be dropped
by using Popper measures instead of classical probabilities). So the following more
charitable reading of Hempel seems plausible. When presenting his first three con-
ditions, Hempel had in mind Carnap’s second explicandum that Carnap explicates
by absolute confirmation, or more generally: a plausibility relation. But then, when
discussing the Converse Consequence Condition, Hempel also felt the need for a
second concept of confirmation aiming at informative theories.

Given that it was the Converse Consequence Condition which Hempel gave up in
his Studies, the present analysis makes perfect sense of his argumentation. Though he
felt the need for two concepts of confirmation, Hempel also realized that these two
concepts are conflicting (that is the content of his triviality result, corresponding to the
singularity observation of section 3). Consequently he abandoned the informativeness
concept of confirmation in favor of the plausibility concept aiming at true theories.

Let us check this by going through Hempel’s conditions. Absolute confirma-
tion satisfies the Entailment Condition, as shown above. As to the Special Conse-
quence and the Special Consistency Condition (where the present analysis agrees with
Carnap’s), it is clear that Pr

(
H′ | E

)
> r whenever Pr (H | E) > r and H � H′, and

that Pr
(
H′ | E

)
< r whenever Pr (H | E) > r and H � ¬H′ and r ∈ [

.5, 1). (Non-empty
informativeness relations do not satisfy 3.1. Informativeness relations satisfying 2.1
or 1 are trivial in the sense that E confirms at least one H iff E confirms all H.) The
culprit, according to Hempel (cf. pp. 103-107, esp. pp. 104–105 of his Studies), is the
Converse Consequence Condition. The latter condition coincides with the defining
clause of informativeness relations by expressing the requirement that informative-
ness increases with the logical strength of the theory to be assessed. It is, for instance,
satisfied by HD-confirmation.

5.4 The logic of theory assessment

As we have seen, HD says that a good theory is informative, whereas IL says good the-
ories are probable or true. According to the above analysis, the driving force behind
Hempel’s conditions is the idea that a good theory is both true and informative.
Hempel can thus be seen as the champion of the plausibility-informativeness theory.
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As I will show now we can have his cake and eat it too. There is a logic that takes into
account both of these two conflicting concepts.

According to the logic of theory assessment (Huber, 2007a), H is an acceptable
theory for E iff H is at least as plausible as and more informative than its negation
relative to E, or H is more plausible than and at least as plausible as its negation
relative to E. In terms of probabilities12 this means

E |∼i∗,Pr H ⇔ Pr (H | E) ≥ Pr (¬H | E) & i∗ (H, E) > i∗ (¬H, E) ,

or

Pr (H | E) > Pr (¬H | E) & i∗ (H, E) ≥ i∗ (¬H, E) ,

where i∗ is any function of i = Pr (¬H | ¬E) and i′ = Pr (¬H) that is non-decreasing
in both arguments, and increasing in at least one. |∼i∗,Pr is the (i∗-) assessment relation
induced by Pr on L.

The term ‘accept’ is used as a qualitative counterpart to the quantitative assessment
value, and not in the sense of ‘believe’ or ‘hold to be true’. Loosely speaking, the logic
of theory assessment has it that the attitude towards hypotheses is like the attitude
towards bottles of wine. One would like to buy a good bottle of wine for a small
price. On the one hand, one wants to spend as little money as possible (one’s theory
should be as plausible or riskless as possible). On the other hand, one wants to drink
reasonably good wine (one’s theory should be sufficiently informative). Sometimes
one need not care much about the quality of the wine (say, when one is mixing it with
juice anyway), and the main focus is on the price — like when one is concerned with
several alternative theories all sufficiently informative to answer one’s questions, and
one wants to choose the most plausible one. Usually, though, quality does matter.
Likewise, in normal situations the most plausible theories just won’t do, because they
are too uninformative to answer our questions.

The trade-off between price and quality characterizes a pool of candidate bottles
of wine from which to choose. Call them favorable deals. For instance, a good bottle
of wine for free is a favorable deal. And if a bottle of wine is a favorable deal, then
so is any equally good or better bottle for the same price or less. The logic of theory
assessment similarly characterizes the pool of acceptable hypotheses. For instance, a
sufficiently informative theory that is certainly true is acceptable. And if a theory is
acceptable, then so is any equally or more informative theory that is equally or more
plausible.

Another, perhaps more natural way of defining a qualitative counterpart to the
quantitative assessment value is to say that H is acceptable relative to E iff the overall
assessment value of H relative to E is greater than that of its negation. The reason
why I prefer the stronger notion of acceptability is that the weaker notion is heavily
dependent on the way one weighs between informativeness and plausibility. Note,
though, that there may be hypotheses H1, H2, data E, and assessment functions a
such that H1 is an acceptable theory for E, but H2 is not, even though, relative to E,
a assigns a greater assessment value to H2 than to H1.13

12 The logic of theory assessment in Huber (2007a) is spelt out in terms of ranking functions. While
there are many formal parallels between ranking functions and probability measures, there are also
important conceptual differences. One of them is that, conceptually, the rank-theoretic notion of
acceptability is weaker than its probabilistic counterpart. In the probabilistic case an acceptable H
cannot have a probability of less than .5, which is a requirement that is hardly ever satisfied in examples
from science. In the rank-theoretic case an acceptable H merely cannot be disbelieved.
13 I am grateful to Alexander Moffett for pointing this out to me at FEW 2004 in Berkeley, CA.
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Let us see how acceptability relates to Carnap’s concept of qualitative confirma-
tion. Positive probabilistic relevance between E and H is necessary in order for H to
be an acceptable theory for E. Here is why. First,

i∗ (H, E)
>

≥ i∗ (¬H, E) ⇒
Pr (¬H | ¬E)

>

≥ Pr (H | ¬E)

or

Pr (¬H)
>

≥ Pr (H) .

Second,
[

Pr (H | E) ≥ Pr (¬H | E) & Pr (¬H | ¬E) > Pr (H | ¬E) , or
Pr (H | E) > Pr (¬H | E) & Pr (¬H | ¬E) ≥ Pr (H | ¬E)

]

or[
Pr (H | E) ≥ Pr (¬H | E) & Pr (¬H) > Pr (H) , or
Pr (H | E) > Pr (¬H | E) & Pr (¬H) ≥ Pr (H)

]

entails
Pr (H | E) > Pr (H) .

However, the converse is not true, because positive probabilistic relevance is symmet-
ric, whereas acceptability is not—which, as noted by Christensen(1999, 437f), is as it
should be.

6 What is the point?

6.1 Revealing the true assessment structure

An important question a theory of theory assessment faces is this. What is the point
of having theories that are given high assessment values? That is, why are theories
with high assessment values better than other theories? In terms of confirmation the
question is: what is the point of having well confirmed theories? That is, why should
we stick to well confirmed theories rather to any other theories?14

The traditional answer to this question is that science aims at truth, and that one
should stick to well confirmed theories because, in the long run, confirmation takes
one to the truth. Yet, as we have seen, truth is only one side of the coin. Therefore,
a different answer is called for. It will be that, as epistemic agents, we (all of us, not
only scientists) aim at informative truth, and that we should stick to theories with high
assessment values because, in the medium run, theory assessment takes us to the most
informative among all true theories.

What is an informative true theory? Given a possible world (possibility, model) ω,
contingent theory H1 is to be preferred in ω over contingent theory H2 if

• H1 is true in ω, but H2 is false in ω; or
• H1 and H2 have the same truth value in ω, but H1 logically implies H2, whereas H2

does not logically imply H1.

In case H is logically false, it is worse in ω than every contingent theory that is true in
ω (because they are all true in ω, whereas H is false in ω). However, H is better than

14 I discuss this question for absolute and incremental confirmation in Huber (2005).
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every contingent theory that is false in ω (because H is more informative than any one
of them). Similarly, if H is logically true, it is worse in ω than every contingent theory
that is true in ω (because they all are more informative than H), but better than every
contingent theory that is false in ω (because they all are false in ω, whereas H is true
in ω). Let us define accordingly.

Definition 6 A possibly partial function f : L × L × L → 	 reveals the true assess-
ment structure in world ω with demarcation β iff for any hypotheses H, H1, H2 ∈ L,
every body of background information B ∈ L which is true in ω, and any data stream
e0, . . . , en, . . ., ei ∈ L, from ω (i.e. a sequence of sentences all of which are true in ω):

1. If H1 is contingently true in ω and H2 is contingently false in ω, then there is n such
that for all m ≥ n: f (H1, Em, B) > β > f (H2, Em, B).

2. If H1 and H2 are contingently true in ω, but H1 is logically stronger than H2, then
there is n such that for all m ≥ n: f (H1, Em, B) > f (H2, Em, B) > β.

3. If H1 and H2 are contingently false in ω, but H1 is logically stronger than H2, then
there is n such that for all m ≥ n: β > f (H1, Em, B) > f (H2, Em, B).

4. If H is logically determined, then it holds for all m: f (H, Em, B) = β.

Here Em = e0 ∧ · · · ∧ em−1.

So f must stabilize to the correct answer. That is, f must get it right after finitely many
steps, and continue to do so forever without necessarily halting (or giving any other
sign that it has arrived at the correct answer).15 The smallest n for which the above
holds is called the point of stabilization.

The central question is whether assessment functions do in fact reveal the true
assessment structure and thus lead to informative true theories. As shown in more
detail below, the answer is affirmative: every function satisfying Continuity in Cer-
tainty and Demarcation in the sense of i and p reveals the true assessment structure
in almost every world when presented data separating the set of all possible worlds.16

6.2 Making the point more precise

This section develops the claim of the last section. The framework adopted here is
that of Gaifman & Snir (1982). L0 is a first order language for arithmetic. It con-
tains all numerals ‘1’, ‘2’, . . . as individual constants, and countably many individual
variables ‘x1’, . . . taking values in the set of natural numbers N. Furthermore, L0 con-
tains the common symbols ‘+’, ‘·’, and ‘=’ for addition, multiplication, and identity,
respectively. In addition, there may be finitely many predicates and function symbols

15 Stabilization to the correct answer is a stronger requirement than convergence to the correct
answer (see Kelly, 1996). The latter is a bit odd to formulate for revealing the true assessment struc-
ture. In general it says that for any ε > 0 (as small as you like) there exists a point n (depending
on ε) such that for all later points m > n, f ’s conjecture differs form “the truth” only by an amount
smaller than ε. The difference between stabilization and convergence was the reason for appealing to
the medium run (stabilization) as compared to the long run (convergence). Note, however, that the
Gaifman and Snir convergence theorem can be used to obtain an almost-sure stabilization result by
assigning 1 to H, if the probability of H is above .5 (or any other positive threshold that is smaller
than 1), and 0 otherwise (cf. section 7).
16 The result stated below holds only for almost every world and is restricted to data sequences
that separate ModL. This flaw is serious (Kelly, 1996, ch. 13), but not inevitable. There are other
paradigms one might adopt such as ranking theory, where “pointwise reliability” is possible (Kelly,
1999). However, the price of pointwise reliability is that the set of possible worlds be countable. It is
fair to say that measure one results are not problematic in this case.
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denoting certain fixed relations over N. Finally, L0 contains the quantifiers ‘∀’, ‘∃’, the
unary sentential connective ‘¬’, and the binary sentential connectives ‘∧’, ‘∨’, ‘→’,
and ‘↔’. The language L is obtained from L0 by adding finitely many predicates and
function symbols.

A model ω for L consists of an interpretation ϕ of the empirical symbols which
assigns every k-ary predicate ‘P’ a subset ϕ (‘P’) ⊆ Nk, and every k-ary function
symbol ‘f ’ a function ϕ (‘f ’) from Nk to N. The interpretation of the symbols in L0
is the standard one and is kept the same in all models. ModL is the set of all models
for L. ‘ω |� A’ says that formula A is true in model ω ∈ ModL. A [x1, . . . , xk] is valid,
|� A [x1, . . . , xk], iff ω |� A [n1/x1, . . . , nk/xk] for all ω ∈ ModL and all numerals
n1, . . . , nk ∈ L0. Here, ‘A [n1/x1, . . . , nk/xk]’ results from ‘A [x1, . . . , xk]’ by unifor-
mously substituting ‘ni’ for ‘xi’ in ‘A’, 1 ≤ i ≤ k. ‘A [x1, . . . , xk]’ indicates that ‘x1’, . . .,
‘xk’ are the only individual variables occurring free in ‘A’.

Definition 7 A function Pr : L → 	≥0 is a probability on L iff for all A, B ∈ L:

1. |� A ↔ B ⇒ Pr (A) = Pr (B)

2. |� A ⇒ Pr (A) = 1
3. |� ¬ (A ∧ B) ⇒ Pr (A ∨ B) = Pr (A) + Pr (B)

4. Pr (∃xA [x]) = sup
{
Pr (A [n1/x] ∨ . . . ∨ A [nk/x]) : n1, . . . , nk ∈ N, k ∈ N≥1

}

Iff Pr (B) > 0, the conditional probability Pr (· | A) : L → 	≥0 based on the probabil-
ity Pr (·) : L → 	≥0 is defined as

Pr (A | B) = Pr (A ∧ B)

Pr (B)
.

A set of sentences S separates a set of models X ⊆ ModL just in case for any two
distinct ω1, ω2 ∈ X there is a sentence A ∈ S such that ω1 |� A and ω2 �|� A. The set of
all atomic empirical sentences separates ModL. Gaifman & Snir (1982, p. 507) prove
the following theorem.

Theorem 1 (Gaifman and Snir Convergence Theorem) Let the set of sentences S =
{Ai : i = 0, 1, . . .} separate ModL, and let [B] (ω) be 1 if ω |� B and 0 otherwise. Then
for every B ∈ L:

Pr

⎛

⎝B |
∧

0≤i<n

Aω
i

⎞

⎠ → [B] (ω) almost everywhere as n → ∞.

Based on the Gaifman and Snir convergence theorem we can now prove

Theorem 2 Let e0, . . . , en, . . . be a sequence of sentences of L which separates ModL,
and let eω

i be ei, if ω |� ei, and ¬ei otherwise, where ω ∈ ModL. Let Pr be a regular
probability on L, and let a be a function of, among others, i and p which satisfies Conti-
nuity in Certainty and Demarcation for i and p. Finally, let Pr∗ be the unique probability
measure on the smallest σ -field A containing the field {Mod (A) : A ∈ L} such that for
all H ∈ L: Pr (H) = Pr∗ (Mod (H)), where Mod (A) = {ω ∈ ModL : ω |� A}. Then
there exists X ∈ A with Pr∗ (X) = 1 such that the following holds for every ω ∈ X, any
two contingent H1, H2 ∈ L, and every H ∈ L:

1. ω |� H1, ω �|� H2 ⇒ ∃n∀m ≥ n : a
(
H1, Eω

m
)

> β > a
(
H2, Eω

m
)

2. ω |� H1, H1 � H2 �� H1 ⇒ ∃n∀m ≥ n : a
(
H1, Eω

m
)

> a
(
H2, Eω

m
)

> β
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3. ω �|� H2, H1 � H2 �� H1 ⇒ ∃n∀m ≥ n : β > a
(
H1, Eω

m
)

> a
(
H2, Eω

m
)

4. |� H or |� ¬H ⇒ ∀m : a
(
H, Eω

m
) = β.

Proof 1. Assume the conditions stated in theorem 2, and suppose ω |� H1 and
ω �|� H2, where ω ∈ X ′ for some X ′ ∈ A with Pr∗

(
X ′) = 1 such that for all B ∈ L and

all ω′ ∈ X ′:
Pr

(
B | Eω′

n

)
→ [B]

(
ω′) as n → ∞

(such X ′ exists by the Gaifman and Snir convergence theorem). So

Pr
(
H1 | Eω

n
) → 1 as n → ∞, and Pr

(
H2 | Eω

n
) → 0 as n → ∞.

First, observe that there exists n1 such that for all m ≥ n1:

Pr
(¬H1 | ¬Eω

m
)

> Pr (¬H1) > 0 and Pr
(¬H2 | ¬Eω

m
)

< Pr (¬H2) < 1.

The reason is that Pr is regular, the Hi are contingent (i = 1, 2), and, provided
0 < Pr

(
Eω

m
)

< 1,

Pr
(¬Hi | ¬Eω

m
) >

<
Pr (¬Hi) ⇔ Pr

(
Hi | Eω

m
) >

<
Pr (Hi) .

If Pr
(
Eω

m
) = 0, then Pr∗

(
Mod

(
Eω

m
)) = 0 (Gaifman & Snir, 1982, p. 504, Basic Fact

1.3). The union of all such sets Mod
(
Eω

m
)

of probability 0 is also of probability 0 (there
are just countably many such sets), i.e.

Pr ∗ (A) = 0, A :=
⋃{

Mod
(
Eω

m
) ∈ A : Pr ∗ (

Mod
(
Eω

m
)) = 0

} ∈ A.

Similarly, if Pr
(
Eω

m
) = 1, then Pr∗

(
Mod

(¬Eω
m

)) = 0. The union of all such sets
Mod

(¬Eω
m

)
of probability 0 is also of probability 0, i.e.

Pr ∗ (B) = 0, B :=
⋃ {

Mod
(¬Eω

m
) ∈ A : Pr ∗ (

Mod
(
Eω

m
)) = 1

} ∈ A.

As a consequence, X := X ′ \ (A ∪ B) ∈ A and Pr ∗ (X) = 1. Assume therefore that
ω ∈ X. As Pr

(
H1 | Eω

n
) →n 1 and Pr

(
H2 | Eω

n
) →n 0, there is n1 such that for all

m ≥ n1:
Pr

(
H1 | Eω

m
)

> Pr (H1) and Pr
(
H2 | Eω

m
)

< Pr (H2) ,

and thus

Pr
(¬H1 | ¬Eω

m
)

> Pr (¬H1) > 0 and Pr
(¬H2 | ¬Eω

m
)

< Pr (¬H2) < 1.

Hence

Pr (¬H1) ≤ inf
m≥n1

{
Pr

(¬H1 | ¬Eω
m

)}
, Pr (¬H2) ≥ sup

m≥n1

{
Pr

(¬H2 | ¬Eω
m

)}
.

By Continuity in Certainty, for ε = Pr(¬H1)
2 and the sequences ti = Pr

(
H1 | Eω

i
)

and t′i = 1 with ti, t′i →i tmax = 1 there exists n2 such that for all m ≥ n2 and all
sm, s′

m ∈ Rs = [
0, 1

]
:

sm > s′
m + ε ⇒ a (sm, tm) > a

(
s′

m, t′m
)

.

For si = Pr
(¬H1 | ¬Eω

i
)

and s′
i = 0 we thus get for every m ≥ max {n1, n2}: a (sm, tm) >

a (0, 1) = β. Similarly, for ε = 1−Pr(¬H2)
2 and the sequences ti = 0 and t′i = Pr

(
H2 | Eω

i
)
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with ti, t′i →i tmin = 0 there exists n3 such that for all m ≥ n3 and all sm, s′
m ∈ Rs =[

0, 1
]
:

sm > s′
m + ε ⇒ a (sm, tm) > a

(
s′

m, t′m
)

.

For si = 1 and s′
i = Pr

(¬H2 | ¬Eω
i
)

we thus get for every m ≥ max {n1, n3}: β =
a (1, 0) > a (sm, tm). Hence for every m ≥ max {n1, n2, n3}:

a
(
Pr

(¬H1 | ¬Eω
m

)
, Pr

(
H1 | Eω

m
))

> β > a
(
Pr

(¬H2 | ¬Eω
m

)
, Pr

(
H2 | Eω

m
))

.

2. Suppose now that ω |� H1, ω |� H2, and H1 � H2 �� H1, where ω ∈ X for some
X ∈ A as before. So

Pr
(
H1 | Eω

n
) → 1 as n → ∞, and Pr

(
H2 | Eω

n
) → 1 as n → ∞,

and we can safely assume that 0 < Pr
(
Eω

m
)

< 1 for all m. As before, there exists n1
such that for all m ≥ n1: Pr

(¬H2 | ¬Eω
m

)
> Pr (¬H2) > 0. Observe that

Pr
(¬H1 | ¬Eω

m
) − Pr

(¬H2 | ¬Eω
m

) = 1 − Pr (H1) − Pr
(
Eω

m
) + Pr

(
H1 ∧ Eω

m
)

Pr
(¬Eω

m
) −

−1 − Pr (H2) − Pr
(
Eω

m
) + Pr

(
H2 ∧ Eω

m
)

Pr
(¬Eω

m
)

= Pr (H2) − Pr (H1)

Pr
(¬Eω

m
) −

−
[
Pr

(
H2 | Eω

m
) − Pr

(
H1 | Eω

m
)] · Pr

(
Eω

m
)

Pr
(¬Eω

m
)

>
Pr (H2) − Pr (H1)

Pr
(¬Eω

m
) −

−Pr
(
H2 | Eω

m
) − Pr

(
H1 | Eω

m
)

Pr
(¬Eω

m
) .

By the above, for ε = Pr(H2)−Pr(H1)
2 > 0 there exists nε such that for all m ≥ nε:

Pr
(
H2 | Eω

m
) − Pr

(
H1 | Eω

m
)

< ε. Consequently it holds for all m ≥ nε:

Pr
(¬H1 | ¬Eω

m
) − Pr

(¬H2 | ¬Eω
m

)
>

2ε − ε

Pr
(¬Eω

m
) > ε,

i.e. Pr
(¬H1 | ¬Eω

m
)

> Pr
(¬H2 | ¬Eω

m
) + ε.
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By Continuity in Certainty17, for ε > 0 and the sequences ti = Pr
(
H1 | Eω

i
)

and
t′i = Pr

(
H2 | Eω

i
)

with ti, t′i →i tmax = 1 there is n2 such that for all m ≥ n2 and all
sm, s′

m ∈ Rs = [
0, 1

]
:

sm > s′
m + ε ⇒ a (sm, tm) > a

(
s′

m, t′m
)

.

For si = Pr
(¬H1 | ¬Eω

i
)

and s′
i = Pr

(¬H2 | ¬Eω
i
)

we thus get for all m ≥
max {n1, n2, nε}: a (sm, tm) > a

(
s′

m, t′m
)
.

It follows from 1 that there is n3 such that for all m ≥ n3:

a
(
Pr

(¬H2 | ¬Eω
m

)
, Pr

(
H2 | Eω

m
))

> β.

Hence for all m ≥ max {n1, n2, n3, nε}:
a

(
Pr

(¬H1 | ¬Eω
m

)
, Pr

(
H1 | Eω

m
))

> a
(
Pr

(¬H2 | ¬Eω
m

)
, Pr

(
H2 | Eω

m
))

> β.

3. Similarly.
4. This follows from Demarcation β. �

Corollary 1 The same holds true if i = Pr (¬H | ¬E) is replaced by i′ = Pr (¬H), even
if Continuity in Certainty is weakened to Weak Continuity in Certainty.

Corollary 2 The same holds true if i is replaced by any function of i and i′ that is
non-decreasing in both arguments, and increasing in at least one.

The relativization to the body of background information B has been dropped. The
above entails that there exists X ∈ A with Pr∗ (X | Mod (B)) = 1, for every B ∈ L
with Pr (B) > 0, such that 1–4 hold for every ω ∈ Mod (B) ∩ X.

Continuity in its general form is not needed for these theorems to hold. In fact,
even Continuity in Certainty is not necessary. The necessary and sufficient condition
for revealing the true assessment structure in almost every world when presented
separating data is this (β is assumed to be 0).

Definition 8 A possibly partial function f : L × L × L → 	 is a Gaifman–Snir assess-
ment function iff for every Gaifman-Snir language L, every probability Pr on L, and
every {ei : i ∈ N} ⊆ L separating ModL there is X ∈ A with Pr∗ (X) = 1 such that for
all ω ∈ X and all m ∈ N:

I.
H1 � H2 �� H1

Pr
(
H1 | Eω

m
) →m

{
1
0

⇒ ∃n∀m ≥ n : f
(
H1, Eω

m
)

> f
(
H2, Eω

m
)

.

II. � H1, H2 � ⊥, Pr
(
Eω

m
)

> 0 ⇒ f
(
H1, Eω

m
) = f

(
H2, Eω

m
) = 0.

Definition 9 Let L be a Gaifman–Snir language, let Pr be a probability on L, and let
{ei : i ∈ N} ⊆ L separate ModL. A possibly partial function f: L × L × L → 	 reveals

17 It is here where the assumption enters that the δ in Continuity and the n in Continuity in Cer-
tainty depend only on ε, which is a lower bound of the difference between sm = Pr

(¬H1 | ¬Eω
m

)

and s′m = Pr
(¬H2 | ¬Eω

m
)
. Otherwise, i.e. when δ or n depend on sm and s′m, it is possible that

nsm,s′m = m + 1. In this case there is no n such that for all m ≥ n:

a
(
Pr

(¬H1 | ¬Eω
m

)
, Pr

(
H1 | Eω

m
))

> a
(
Pr

(¬H2 | ¬Eω
m

)
, Pr

(
H2 | Eω

m
))

.

In case of sm = Pr
(¬H1

)
and s′m = Pr (¬H2) it suffices to assume Weak Continuity in Certainty,

because the informativeness values sm and s′m do not change with m.
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the true assessment structure of Pr∗-almost every world ω ∈ ModL when presented sep-
arating {ei} iff there is X ∈ A with Pr∗ (X) = 1 such that for all ω ∈ X, all contingent
H1, H2 ∈ L, and all H ∈ L:

1. ω |� H1, ω �|� H2 ⇒ ∃n∀m ≥ n : f
(
H1, Eω

m
)

> 0 > f
(
H2, Eω

m
)

.
2. ω |� H1, H1 � H2 �� H1 ⇒ ∃n∀m ≥ n : f

(
H1, Eω

m
)

> f
(
H2, Eω

m
)

> 0.
3. ω �|� H2, H1 � H2 �� H1 ⇒ ∃n∀m ≥ n : 0 > f

(
H1, Eω

m
)

> f
(
H2, Eω

m
)

.
4. H � ⊥ or � H ⇒ ∀m : f

(
H, Eω

m
) = 0.

f reveals the true assessment structure in almost every world when presented separating
data iff for any language L, any probability on L, and any {ei : i ∈ N} ⊆ L separating
ModL: f reveals the true assessment structure in Pr∗-almost every world ω ∈ ModL
when presented separating {ei}.
Theorem 3 A possibly partial function f : L × L × L → 	 reveals the true assessment
structure in almost every world when presented separating data iff f is a Gaifman–Snir
assessment function.

Proof Suppose f is a Gaifman–Snir assessment function. Let L be a language and Pr
a probability on L. Suppose {ei : i ∈ N} ⊆ L separates ModL. We show that f reveals
the true assessment structure of Pr∗-almost every world ω ∈ ModL when presented
separating {ei}. By the Gaifman and Snir convergence theorem, there is X ′ ∈ A with
Pr∗

(
X ′) = 1 such that for all ω ∈ X ′ and all H ∈ L: Pr

(
H | Eω

m
) →m [H] (ω). By

assumption, there is X ′′ ∈ A such that for all ω ∈ X ′′ and all m ∈ N:

I.
H1 � H2 �� H1

Pr
(
H1 | Eω

m
) →m

{
1
0

⇒ ∃n∀m ≥ n : f
(
H1, Eω

m
)

> f
(
H2, Eω

m
)

.

II. � H1, H2 � ⊥, Pr
(
Eω

m
)

> 0 ⇒ f
(
H1, Eω

m
) = f

(
H2, Eω

m
) = 0.

Hence, X ′∩X ′′ is an element of A with Pr∗
(
X ′ ∩ X ′′) = 1 and such that I and II are sat-

isfied for all ω ∈ X ′∩X ′′ and all m ∈ N. Furthermore, A := {
ω ∈ X ′ : ∃m : Pr

(
Eω

m
) = 0

}

is of Pr∗-measure 0, i.e. there is B ∈ A with A ⊆ B and Pr∗ (B) = 0. Hence
X := (

X ′ ∩ X ′′) \ B is an element of A with Pr∗ (X) = 1 such that I and II are
satisfied for all ω ∈ X and all m ∈ N.

So suppose ω |� H1, for ω ∈ X and contingent H1 ∈ L. Then there is n such
that for all m: f

(
H1, Eω

m
)

> f
(�, Eω

m
) = 0. Furthermore, if ω �|� H2, for the same

ω ∈ X and some contingent H2 ∈ L, then there is n such that for all m: f
(
H2, Eω

m
)

<

f
(⊥, Eω

m
) = 0. If ω |� H1, for some ω ∈ X, and H1 � H2 �� H1, for contingent

H1, H2 ∈ L, then Pr
(
H1 | Eω

m
) →m 1, and hence Pr

(
H2 | Eω

m
) →m 1. So there is

n such that for all m ≥ n: f
(
H1, Eω

m
)

> f
(
H2, Eω

m
)

> f
(�, Eω

m
) = 0. Similarly, if

ω �|� H2, for some ω ∈ X, and H1 � H2 �� H1, for contingent H1, H2 ∈ L, then
Pr

(
H2 | Eω

m
) →m 0, and hence Pr

(
H1 | Eω

m
) →m 0. So there is n such that for all

m ≥ n: 0 = f
(⊥, Eω

m
)

> f
(
H1, Eω

m
)

> f
(
H2, Eω

m
)
. Finally, for all ω ∈ X: f

(
H, Eω

m
) = 0

for any logically determined H and all m.
Conversely, suppose f reveals the true assessment structure in almost every world

when presented separating data. We show that f is a Gaifman–Snir assessment func-
tion. Suppose not. Then there exist L, Pr on L, and {ei : i ∈ N} ⊆ L separating ModL
such that for all X ∈ A with Pr∗ (X) = 1 there is ω ∈ X such that:

i. There are H1, H2 ∈ L with H1 � H2 �� H1 and Pr
(
Hi | Eω

m
) →m

{
1
0

such that

for all n there is m ≥ n: f
(
H1, Eω

m
) ≤ f

(
H2, Eω

m
)
; or
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ii. there are logically determined H ∈ L and m such that Pr
(
Eω

m
)

> 0 and
f
(
H, Eω

m
) �= 0.

By the Gaifman and Snir convergence theorem, there is X ∈ A with Pr∗ (X) = 1 such
that for all ω ∈ X and all H ∈ L: Pr

(
H | Eω

m
) →m [H] (ω). For any such X there is

ω ∈ X such that i or ii hold.

Case 1 If Pr
(
Hi | Eω

m
) →m 1, then H1 and H2 are true in ω. Hence, H1 is contingent

and Pr
(
Eω

m
)

> 0 for all m ∈ N. If H2 is contingent, then 2 fails; if H2 is logically
determined, then 4 fails for H2 or 1 fails for H1. If Pr

(
Hi | Eω

m
) →m 0, then H1 and

H2 are false in ω. Hence, H2 is contingent and Pr
(
Eω

m
)

> 0 for all m ∈ N. If H1 is
contingent, then 3 fails; if H1 is logically determined, then 4 fails for H1 or 1 fails
for H2.

Case 2 Obviously 4 fails. ��
One reason why I nevertheless stick to the more general Continuity conditions is that
it depends on the underlying convergence theorem which conditions are necessary
and sufficient for revealing the true assessment structure in so and so many worlds
when presented such and such data. More importantly, the idea behind the use of
these limit considerations is that they provide a theoretical justification for obeying
the proposed normative conditions in the here and now. When assessing several alter-
native theories we cannot wait until we have arrived at the point of stabilization. We
need to make our evaluations when the plausibility and informativeness values are
somewhere in between their maximal and minimal values. Continuity tells us what to
do in such a situation; Continuity in Certainty does not.

However, I also need to justify this answer. And I do so by appealing to the fact
that when we satisfy Continuity in the special case when the plausibility values con-
verge to certainty, we reveal the true assessment structure in almost every world when
presented separating data. Of course, as long as the relevant probabilities are non-
extreme, this is compatible with any funny behavior in the short run. One response
to this objection is to look at the necessary and sufficient conditions for revealing the
true assessment structure (in almost every world when presented separating data)
as soon as possible (Kelly, 1996). Then we vindicate the normative conditions of the
plausibility-informativeness theory relative to the goal of eventually arriving at the
most informative true theory as soon as possible. Another response is to say that
the very fact that we do not know when the point of stabilization occurs is reason
enough to always be prepared for it to take place. While I think that only the first
answer is conclusive, I cannot offer a proof to the effect that Continuity and Demar-
cation are necessary and sufficient for eventually arriving at the most informative true
theory as soon as possible.

Finally I should mention that the present approach is also viable if truth and infor-
mativeness are not the only epistemic values. Whatever these values besides truth are,
and however they are measured; if there is a function u such that u (H, E, B) measures
the overall value without truth of H in view of E and B; and if for any two theories H1
and H2, any separating data sequence e0, . . . , en, . . . from any world ω, and any body
of background information B true in ω there is a point j such that for all later points
k > j: u (H1, Ek, B) > u (H2, Ek, B) + ε, for some ε > 0; then the following holds for
every f satisfying the two conditions corresponding to Continuity in Certainty and
Demarcation for u (instead of s) and t. There is a point m such that for all later points
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n > m: f (H1, En, B) > f (H2, En, B), where both of these values are greater than β, if
both H1 and H2 are contingently true in ω, both of these values are smaller than β if
both H1 and H2 are contingently false in ω, and β lies between these two values if H1
is contingently true, but H2 is contingently false in ω.

7 Relevance measures and their exclusive focus on truth

As shown in the preceding section, all one needs to do to reveal the true assessment
structure in almost every world when presented separating data is to stick to a func-
tion satisfying Continuity in Certainty and Demarcation for i∗ and p, where i∗ is any
function of i and i′ that is non-decreasing in both and increasing in at least one of its
arguments. What about the central notion in Bayesian confirmation theory—that of
a β-relevance measure?

The connection to the i, p-function sc = i + p + c for c = −1, and the function
df for f = Pr (¬E | B) respectively f = Pr (¬E | B) · Pr (B) · Pr (E ∧ B) has already
been pointed out. So for any strict probability Pr, sPr and cPr and dPr reveal the true
assessment structure in almost every world when presented separating data. However,
there are many other relevance measures. Do they all further the goal of eventually
arriving at the most informative true theory?

If H1 is contingently true in ω, and H2 is contingently false in ω, then, after finitely
many steps, H1 has to get a greater value in ω than the demarcation parameter β

which in turn has to be greater than the value of H2 in ω. Any β-relevance measure
r reveals this part of almost any ω’s assessment structure. By the Gaifman and Snir
convergence theorem,

Pr
(
H1 | Eω

n
) →n 1 and Pr

(
H2 | Eω

n
) →n 0,

whence there exists n such that for all m ≥ n:

Pr
(
H1 | Eω

m
)

> Pr (H1) and Pr
(
H2 | Eω

m
)

< Pr (H2) ,

provided Pr is strict. Thus, by the definition of a β-relevance measure, it holds for all
m ≥ n:

r
(
H1, Eω

m
)

> β > r
(
H2, Eω

m
)

.

Moreover, the value (in ω) of any logically determined hypothesis is always equal
to β.

So far, so good. But the definition of a β-relevance measure by itself does not imply
anything about the relative positions of two hypotheses, if they have the same truth
value in some world ω. This exclusive focus on truth—in contrast to the weighing
between the conflicting goals of informativeness and truth of an s, t-function—is what
prevents relevance measures from revealing the true assessment structure in general.
As we have seen, β-relevance measures sometimes do weigh between i∗ and p. Yet,
β-relevance measures are not required to weigh between informativeness and truth.
In concluding, let us briefly look at the most popular relevance measures all of which
are 0-relevance measures. It is assumed throughout that Pr is strict.

As already mentioned, the Joyce–Christensen measure s, the distance measure d,
and the Carnap measure c get it right in all four cases (in case of Carnap’s c, note that
the union of all sets Mod

(±Eω
n
)

with Pr
(±Eω

n
) = 0 has probability 0 in the sense of

Pr∗, whence f = Pr
(¬Eω

n | B
) · Pr (B) · Pr

(
Eω

n ∧ B
)

is 0 only for a set of measure 0).
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The log-ratio measure r,

rPr (H, E, B) = log

[
Pr (H | E ∧ B)

Pr (H | B)

]
,

gets it right in case both H1 and H2 are contingently true in ω, and H1 � H2 �� H1.
In this case

rPr
(
H1, Eω

n
) →n log

[
1/ Pr (H1)

]
and rPr

(
H1, Eω

n
) →n log

[
1/ Pr (H2)

]
,

whence there exists n such that for all m ≥ n:

rPr
(
H1, Eω

m
)

> rPr
(
H2, Eω

m
)

> 0.

However, r does not get it right when both H1 and H2 are contingently false in ω, and
such that H1 � H2 �� H1. In this case,

Pr
(
H1 | Eω

m
)

Pr (H1)
>

Pr
(
H2 | Eω

m
)

Pr (H2)
⇔ Pr (H2)

Pr (H1)
>

Pr
(
H2 | Eω

m
)

Pr
(
H1 | Eω

m
) .

For ε = Pr (H2) − Pr (H1) and εm = Pr
(
H2 | Eω

m
) − Pr

(
H1 | Eω

m
)
, this can be written

as
1 + ε

Pr (H1)
> 1 + εm

Pr
(
H1 | Eω

m
) .

So even if both Pr
(
H1 | Eω

m
)

and Pr
(
H2 | Eω

m
)

converge to 0, the logically weaker H2
may always have a greater r-value than H1, as is the case when Pr

(
H1 | Eω

m
) = 1/2m

and Pr
(
H2 | Eω

m
) = 1/m. The failure of r is even clearer when both H1 and H2 are

eventually falsified. In this case the only thing that matters is the minimal plausibility
value, and they both get the same r-value log 0 = −∞. So all falsified theories are
equally, viz. maximally bad. For logically determined H, r takes on the value log 1 = 0,
if it is stipulated that 0/0 = 1.

The situation is even worse for the log-likelihood ratio l,

lPr (H, E, B) = log

[
Pr (E | H ∧ B)

Pr (E | ¬H ∧ B)

]

= log

[
Pr (H | E ∧ B) · Pr (¬H | B)

Pr (¬H | E ∧ B) · Pr (H | B)

]

(Fitelson, 1999, 2001). When H1 and H2 are contingently true or contingently false in
ω and such that H1 � H2 �� H1, it need not be the case that there is n such that for all
m ≥ n:

Pr
(
H1 | Eω

m
) · Pr (¬H1)

Pr
(¬H1 | Eω

m
) · Pr (H1)

>
Pr

(
H2 | Eω

m
) · Pr (¬H2)

Pr
(¬H2 | Eω

m
) · Pr (H2)

.

For ε = Pr (H2) − Pr (H1) and εm = Pr
(
H2 | Eω

m
) − Pr

(
H1 | Eω

m
)

the latter holds iff

1 + ε

Pr (H1) · (1 − Pr (H1) − ε)
> 1 + εm

Pr
(
H1 | Eω

m
) · (

1 − Pr
(
H1 | Eω

m
) − ε

) .

So even if both Pr
(
H1 | Eω

m
)

and Pr
(
H2 | Eω

m
)

converge to 1 or to 0, the logically
weaker H2 may always have a greater l-value than the logically stronger H1. For
instance, this is the case when Pr

(
H1 | Eω

m
) = 1 − 1/m and Pr

(
H2 | Eω

m
) = 1 − 1/2m,

or when Pr
(
H1 | Eω

m
) = 1/2m and Pr

(
H2 | Eω

m
) = 1/m. The failure of l is even clearer
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when both H1 and H2 are eventually verified or falsified. In this case the only thing that
matters is the maximal or minimal plausibility value, and they both get the maximal or
minimal l-value, respectively. So all verified theories are equally, viz. maximally good;
and all falsified theories are equally, viz. maximally bad. If H is logically determined,
l gets it right, if it is stipulated that 0 · 1/1 · 0 = 1 · 0/0 · 1 = 1.

It is interesting to see that the log-likelihood ratio l seems to come out on top when
subjectively plausible desiderata are at issue (Fitelson, 2001), but to do much more
poorly when it comes to the matter-of-fact question whether an assessment function
(or measure of confirmation) furthers the goal of eventually arriving at informative
true theories. Due to their focus on truth, relevance measures—like s, t-functions—
separate true from false theories. However, due to the exclusiveness of this focus, they
do not—in contrast to s, t-functions—distinguish between informative and uninfor-
mative true or false theories.
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