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Milne’s Argument for the Log-Ratio
Measure*

Franz Huber†‡

This article shows that a slight variation of the argument in Milne 1996 yields the log-
likelihood ratio l rather than the log-ratio measure r as “the one true measure of
confirmation.”

1. Introduction. Peter Milne (1996) shows that

r(H, E, B) p log [Pr (HFE ∩ B)/ Pr (HFB)]

is “the one true measure of confirmation” in the sense that r is the one
and only function satisfying the following five constraints on measures
of confirmation C.

1. C(H, E, B) � 0 iff Pr (HFE ∩ B) � Pr (HFB).
2. is a function that the values andC(H, E, B) Pr (XFB) Pr (YFZ ∩ B)

assume on the at most sixteen truth-functional combinations X, Y,
Z of E and H.

3a. If and , thenPr (EFH ∩ B) ! Pr (FFH ∩ B) Pr (EFB) p Pr (FFB)
C(H, E, B) ≥ C(H, F, B).

3b. If and , thenPr (EFH ∩ B) p Pr (FFH ∩ B) Pr (EFB) ! Pr (FFB)
C(H, E, B) ≥ C(H, F, B).

4a. is determined by and theC(H, E ∩ F, B) � C(H, E ∩ G, B) C(H, E, B)
difference .C(H, F, E ∩ B) � C(H, G, E ∩ B)
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4b. If , then .C(H, E ∩ F, B) p 0 C(H, E, B) � C(H, F, E ∩ B) p 0
5. If , then .Pr (EFH ∩ B) p Pr (EFT ∩ B) C(H, E, B) p C(T, E, B)

Among these constraints, 1, 3, and 5 concern the relation between con-
firmation and probability, while 2 and 4 concern confirmation alone. I
will only be concerned with the former.

Constraint 1 is logically equivalent to

1�. .C(H, E, B) � 0 iff Pr (E F H ∩ B) � Pr (EFB)

This makes clear that 1, 3, and 5 say what happens to confirmation
if various relations between the likelihood of hypothesis H onC(H, E, B)

evidence E and background information B, , and the priorPr (EFH ∩ B)
of E given B, , obtain.Pr (EFB)

Constraint 1� is logically equivalent to

1*. .¯C(H, E, B) � 0 iff Pr (EFH ∩ B) � Pr (EFH ∩ B)

Similarly, Constraint 3b is logically equivalent to 3b*: if Pr (EFH ∩ B) p
and , then¯ ¯Pr (FFH ∩ B) Pr (EFH ∩ B) ! Pr (FFH ∩ B) C(H, E, B) ≥

. While Constraints 1 and 3b focus on relations between like-�C(H, F, B)
lihoods and priors, Constraints 1* and 3b* say the same thing by focusing
on relations between likelihoods and what, following Fitelson (2007), we
call catch-alls: . Let us see where this shift in focus takes us.¯Pr (EFH ∩ B)

Regarding Constraint 3a Milne (1996, 21) states that it “corresponds
more or less to the claim . . . that, other things being equal, a theory is
better confirmed by evidence the more likely the theory makes the evi-
dence.” More than one thing can be equal, though. Often not all of them
can be equal simultaneously. According to Constraint 3a, the prior of the
evidence is held fixed: is equal to .Pr (EFB) Pr (FFB)

Consider the catch-all counterpart

3a*. If and ,¯ ¯Pr (EFH ∩ B) ! Pr (FFH ∩ B) Pr (EFH ∩ B) p Pr (FFH ∩ B)
then .C(H, E, B) ≤ C(H, F, B)

According to 3a*, the catch-all, the likelihood of on the evidence, is heldH̄
fixed: is equal to . Given that the theory makes¯ ¯Pr (EFH ∩ B) Pr (FFH ∩ B)
the one evidence more likely than the other, that is, Pr (EFH ∩ B) !

, not both of these other things can be equal.Pr (FFH ∩ B)
Regarding Constraint 5, Milne says that it “is a weak consequence of

the Likelihood Principle” (1996, 22):

In comparing the evidential bearing (relative to background knowl-
edge B) of E on the hypotheses H and T we need consider only

and .Pr (EFH ∩ B) Pr (EFT ∩ B)
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Note that, in the presence of Constraints 1–4, Constraint 5 is equivalent
to the otherwise stronger

5�. If Pr (EFH ∩ B) p Pr (FFT ∩ B) and Pr (EFB) p Pr (FFB), then
C(H, E, B) p C(T, F, B).

This is so because satisfies 5�.r(H, E, B)
Here is the catch-all counterpart of 5�:

5*. If Pr (EFH ∩ B) p Pr (FFT ∩ B) and Pr (EF ∩ B) p Pr (FF ∩ B),¯ ¯H T
then .C(H, E, B) p C(T, F, B)

Let us rename Constraints 2 and 4 by 2* and 4*, respectively. Then things
can be put as follows. In the presence of Constraints 2 and 4, the con-
junction of Constraints 1, 3, and 5 says that is a function ofC(H, E, B)
the likelihood of H on E, , and the prior of E, —Pr (EFH ∩ B) Pr (EFB)
increasing with the former, and decreasing with the latter.

In the presence of 2* and 4*, the conjunction of 1*, 3*, and 5* says
that is a function of the likelihood of H on E, ,C(H, E, B) Pr (EFH ∩ B)
and the catch-all, that is, the likelihood of on E, —in-¯ ¯H Pr (EFH ∩ B)
creasing with the former, and decreasing with the latter.

2. Catch-Alls or Priors? A variation variation of Milne’s proof (presented
in Appendix 1) shows that

¯l(H, E, B) p log [Pr (EFH ∩ B)/ Pr (EFH ∩ B)]

is another true measure of confirmation in the sense that l is the one and
only function satisfying 1*–5*.

As Fitelson (2001, 29) observes, l satisfies 1–4. It is worth noting that
r satisfies 1*–4*. So the difference between r and l lies in 5 versus 5*: l
does not satisfy 5, and r does not satisfy 5*.

Thus r and l agree that confirmation depends on the likelihood of H
on E, , and one other factor. They also agree on how toPr (EFH ∩ B)
compare the likelihood of H on E to the other factor, namely, by taking
logarithms of ratios. What they disagree about is the other factor the
likelihoods of H on E should be compared to: r says the other factor is
the prior of the evidence E, , while l says it is the catch-all, thatPr (EFB)
is, the likelihood of on the evidence E, .¯ ¯H Pr (EFH ∩ B)

3. Odds or Probabilities? Things can be put differently still. Let
and stand for the prior and posterior odds of H,O(HFB) O(HFE ∩ B)

respectively,

Pr (HFB) Pr (HFE ∩ B)
O(HFB) p and O(HFE ∩ B) p .¯ ¯Pr (HFB) Pr (HFE ∩ B)
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Then, as Joyce (2003, table 5) observes,

Pr (HFE ∩ B) O(HFE ∩ B)
r(H, E, B) p log and l(H, E, B) p log .[ ] [ ]Pr (HFB) O(HFB)

Seen this way r and l agree that it is differences between priors and
posteriors that matter for confirmation. They also agree on how to mea-
sure those differences, viz., by taking the logarithm of the ratio of posterior
over prior. What they disagree about is, to speak with Joyce (2003, Section
3), the question whether we should consider differences in “total evidence”
as measured by and , or differences in “net evi-Pr (HFE ∩ B) Pr (HFB)
dence” as measured by and .O(HFE ∩ B) O(HFB)

4. Conclusion. Milne (1996) presents his argument as a desideratum/ex-
plicatum argument for r as opposed to other measures of confirmation.
His confirmation theoretic monism presupposes that there is one and only
one true measure of confirmation. Joyce (2003, Section 3), on the other
hand, favors a confirmation theoretic pluralism according to which,
among others, each of r and l “measures an important evidential rela-
tionship, but that the relationships they measure are importantly
different.”1

This pluralistic view suggests to view Milne’s (1996) argument and the
above variation not so much as arguments for or against one particular
measure of confirmation. Rather, they can be viewed as characterizations
that tell us, descriptively, what particular measures focus on, without
telling us, prescriptively, what we should focus on. The latter, normative
question seems to be beyond the reach of desiderata/explicata approaches,
but to belong to the realm of means-ends epistemology or epistemic con-
sequentialism (Percival 2002; Stalnaker 2002) as exemplified, for proba-
bility, by Joyce (1998), and for confirmation, by Huber (2005).

Appendix 1: A Variation of Milne’s (1996) Proof

The following proof is entirely due to Milne 1996, Appendix 1, although
all errors are, of course, mine.

Constraint 2* entails that is a function of ,C(H, E, B) Pr (EFH ∩ B)
, and . Constraint 5* entails that is in-¯Pr (EFH ∩ B) Pr (HFB) C(H, E, B)

dependent of . So ¯Pr (HFB) C(H, E, B) p F(Pr (EFH ∩ B), Pr (EFH ∩ B))
for some , where .2F:[0, 1] r �* �* p � ∪ {��}

1. Actually Joyce (2003) considers e r and e l, that is, r and l without the log.
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Constraint 1* entails that for all . AsF(x, x) p 0 x � [0, 1]

Pr (E ∩ FFH ∩ B) p Pr (EFH ∩ B) 7 Pr (FFE ∩ H ∩ B)

¯ ¯ ¯Pr (E ∩ FFH ∩ B) p Pr (EFH ∩ B) 7 Pr (FFE ∩ H ∩ B),

Constraint 4* entails that there is a possibly partial such2G: �* r �*
that for all x, y, z , z , w , w � [0, 1]1 2 1 2

F(x 7 z , y 7 w ) � F(x 7 z , y 7 w ) p1 1 2 2

G(F(x, y), F(z , w ) � F(z , w )). (1)1 1 2 2

The range of is assumed to be a real interval. , and soF F(1, 1) p 0

F(x 7 z, y 7 w) � F(x, y) p G(F(x, y), F(z, w)), (2)

which yields and for andG(0, u) p u G(u, 0) p 0 x p y p 1 z p w p
, respectively. Equation (2) and the previous equation give us1

F(x 7 z, x 7 w) p F(x, x) � G(F(x, x), F(z, w)) p F(z, w).

If , then and , orx/z p y/w F(x, z) p F((z/w) 7 y, (x/y) 7 w) z/w p x/y
and . HenceF((w/z) 7 x, (y/x) 7 z) p F(y, w) w/z p y/x F(x, z) p

or for some .F(t 7 y, t 7 w) F(t 7 x, t 7 z) p F(y, w) t � [0,1]
Assume without loss of generality that F(x, z) p F(t 7 y, t 7 w) p

for . Then withF(y, w) t � [0,1] C(H, E, B) p F(x, z) p F(y, w) x/z p
, and so for some¯y/w C(H, E, B) p H(Pr (EFH ∩ B)/ Pr (EFH ∩ B))

. For Equation (1) entailsH: � r � ∗ z p w p 1≥0 2 2

H(x 7 y) p H(x) � G(H(x), H(y)) p H(y) � G(H(y), H(x)). (3)

This and Equation (1) give us

G(H(x), H(y)) � G(H(x), H(z)) p H(x 7 y) � H(x 7 z) (4)

p G(H(x), H(y) � H(z)), (5)

which yields

G(t, u � v) p G(t, u) � G(t, v).

For integers and in the range of F so that is inm, n u 7 m/n (t, u 7 m/n)
the domain of G, we thus have . ConstraintG(t, u 7 m/n) p (m/n) 7 G(t, u)
3a* entails that if . So for all reals r with in theG(t, u) ≤ G(t, v) u ≤ v u 7 r
range of F so that is in the domain of , .(t, u 7 r) G G(t, u 7 r) p r 7 G(t, u)
Hence for some (at this point Milne refersG(t, u) p u 7 g(t) g: �* r �≥0

to Aczél 1966, 31–34).
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Equation (3) entails

H(x 7 y) � H(x 7 z) p H(y) � H(z) � G(H(y), H(x)) � G(H(z), H(x)),

and so Equation (5) gives us

g(H(x)) 7 (H(y) � H(z)) p

H(y) � H(z) � H(x) 7 (g(H(y)) � g(H(z))). (6)

Constraint 1* entails and that is not constant, which impliesH (1) p 0 H
that . For Equation (6) entailsg(0) p 1 H(x) ( 0

g(H(y)) � g(H(z)) p (g(H(x)) � 1) 7 (H(y) � H(z))/H(x).

The left-hand side is independent of , and sox

g(H(x) � 1)/H(x) p k

for some constant .k � �*
From Equation (3) we have

H(x 7 y) p H(x) � G(H(x), H(y))

p H(x) � H(y) 7 g(H(x))

p H(x) � H(y) 7 (H(x) 7 k � 1)

p H(x) � H(y) � k 7 H(x) 7 H(y).

Constraint 4b* entails that if . , sinceH(x) � H(y) p 0 H(x 7 y) p 0 k p 0
it is possible that while and (it sufficesH(x 7 y) p 0 H(x) ( 0 H(y) ( 0
to consider a case where is positively relevant for , is negativelyE H F
relevant for , and is independent of in the sense of some —H E ∩ F H Pr
note that this argument would be problematic if the underlying probability
space were fixed). Hence,

H(x 7 y) p H(x) � H(y), (7)

and so for integers . Constrain 3* entails thatm/nH(x ) p m/n 7 H(x) m, n
if , and so for all . (As MilnerH(x) ≤ H(y) x ≤ y H(x ) p r 7 H(x) r � �

notes, no assumptions about the domain of need be made this time,H
because any number in can be the ratio of two probabilities—again,�*
note that this argument would be problematic if the underlying probability
space were fixed.) Therefore for some constant (at thisH(x) p c 7 log x c
point Milne refers to Aczél 1966, 39–41) that has to be positive in view
of 1* and equals 1 by a suitable choice of the base of log. Hence

.¯C(H, E, B) p log (Pr (EFH ∩ B)/ Pr (EFH ∩ B))
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Appendix 2: Fitelson’s (2001) Objection

Fitelson (2001, 28) notes that “Milne’s argument implicitly requires that
the probability function . . . satisfy some rather strong, unmotivated,Pr
and unintuitive constraints.” In particular, “Milne’s argument makes use
of certain theorems . . . which force the probability function (and,Pr
hence, the spaces over which the measure [of confirmation ] is defined)C
to satisfy various kinds of continuity conditions” (Fitelson 2001, 28, note
43). For a discussion of these conditions Fitelson refers to Halpern 1999a,
1999b, where it is shown that Cox’s (1946) theorem does not hold in finite
domains.

I think it is perfectly reasonable for Milne (and proponents of the above
variation of his argument) to require the domain of the measure of con-
firmation to be infinite. As Halpern (1999a, Section 5; 1999b, TheoremC
5) observes, one response is to say that we are not interested in a single
domain in isolation, but a notion of belief or confirmation (in his or our
case, respectively) that applies uniformly in all domains.

But suppose we are in fact interested in just one single field of prop-
ositions over which our measure of confirmation is defined. SupposeA C
further is finite. Even then the domain of is uncountable, providedA C
we assume does not vary with the underlying probability measure .C Pr
That is, we only have to think of as a mapping of probability spacesC
(and not propositions without probabilities) into the reals, and take its
domain to be the set of all probability spaces (for the fixedAA, PrS A
from above). As far as I can tell, this assumption is implicit in all dis-
cussions of incremental confirmation. Rejecting it means to use different
measures of confirmation for different probability measures on one fixed
domain, rather than uniformly using the same measure of confirmation.

However, the assumption Milne (1996, 24) actually makes is that the
range of forms a real interval. This implies that the domain of isC C
uncountably infinite. As argued, the latter assumption is reasonable for
Milne to make. Obviously it is another question whether the former is,
too.

REFERENCES

Aczél, János (1966), Lectures on Functional Equations and Their Applications. New York:
Academic Press.

Cox, Richard T. (1946), “Probability, Frequency, and Reasonable Expectation”, American
Journal of Physics 14: 1–13.

Fitelson, Branden (2001), Studies in Bayesian Confirmation Theory. PhD dissertation. Mad-
ison: University of Wisconsin–Madison.

——— (2007), “Likelihoodism, Bayesianism, and Relational Confirmation”, Synthese 156:
473–489.

Halpern, Joseph Y. (1999a), “A Counterexample to Theorems of Cox and Fine”, Journal
of AI Research 10: 67–85.



420 FRANZ HUBER

——— (1999b), “Cox’s Theorem Revisited”, Journal of AI Research 11: 429–435.
Huber, Franz (2005), “What Is the Point of Confirmation?”, Philosophy of Science 72: 1146–

1159.
Joyce, James M. (1998), “A Nonpragmatic Vindication of Probabilism”, Philosophy of

Science 65: 575–603.
——— (2003), “Bayes’ Theorem”, in E. N. Zalta (ed.), Stanford Encyclopedia of Philosophy,

http://plato.stanford.edu/entries/bayes-theorem/.
Milne, Peter (1996), “ Is the One True Measure of Confirmation”,log [Pr (HFE ∩ B)/ Pr (HFB)]

Philosophy of Science 63: 21–26.
Percival, Philip (2002), “Epistemic Consequentialism”, Supplement to the Proceedings of the

Aristotelian Society 76: 121–151.
Stalnaker, Robert C. (2002), “Epistemic Consequentialism”, Supplement to the Proceedings

of the Aristotelian Society 76: 153–168.


